Kildare County Council

Proposed Civic Amenity Centre & Waste Transfer Facility at Kilmacredock Upper & Castletown, Celbridge, Co. Kildare Civil Infrastructure Design Report in Support of Part 8 Planning Application

1701-DOB-XX-SI-RP-C-0002

April 2019

Document Control

Docum	nent:	Civil Engineering Design Report in Support of Part 8 Planning Application								
Projec	t:	Proposed Civ	Proposed Civic Amenity Centre, Kilmacredock, Celbridge, Co. Kildare							
Client:		Kildare Coun	Kildare County Council							
Job Nu	umber:	DOBA1701	DOBA1701							
File Or	igin:		Z:\Projects\DOB&A Projets\2017 Projects\DOBA 1701 - KCC Celbridge Civic Amenity Centre\08 Reports & Specifications							
Docum	Document Checking:									
Author	:	Paul Doyle		Signe	ed:	pull .				
Issue	Date	Status	Issued to		Copies	Checked for Issue				
0	11/12/2018	Draft for Comment	Planning Consultar	t	1E	Sonnachaal o'beiz				
1	01/02/2019	Issued for Comment	Planning Consultar	t	1E	Sonneeloal o'beiz				
2	21/02/2019	Issued for Comment	Kildare County Cou	ncil	1E	Donnaelaal o'beiz				
3	10/04/2019	lssued for Planning	Kildare County Cou	ncil	1E	Donnachaal o'beize				

DONNACHADH O'BRIEN

& ASSOCIATES CONSULTING ENGINEERS

Contents

1	Introd	uction		4
2	Plann	ing Stag	e Site Investigation	6
3	Surfac	ce Water	Drainage	7
	3.1 3.2		Surface Water Drainage ed Surface Water Drainage Strategy	
4	Foul D	Drainage		8
	4.1 4.2		Foul Drainage d Foul Drainage Strategy	
5	Water	mains		9
	5.1 5.2 5.3	Propose	Water Supply ed Water Supply Demand Calculations	9
6	Flood	ng		10
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 Roads 7.1 7.2 7.3 7.4 7.5	Floodma CFRAM OPW Pl Celbirdg Sources Fluvial F Pluvial F Sequen Summa s & Traffi Existing Propose 7.2.1 (7.2.2 I 7.2.3 (7.2.4 A Access Exit Sig	od History and Flood Data aps.ie Is FRA ge Local Area Plan 2017-2023 s of Flooding Flooding Flooding Flooding itial Approach and Justification Tests ary ic Arrangement ed Arrangement Chargeable/ Non-Chargeable Waste Areas Chargeable/ Non-Chargeable Waste Areas nternal Roads Car Park Access onto R449 and Permeability for Vulnerable Road Users (VRU) htlines and Autotrack	10 11 11 11 11 12 12 12 12 12 12 12 12 12
Appendix A		•	termains Web Map	
			Site Investigation	
			Network Calculations	
Appendix D) Surfac	e Water	Longitudinal Sections	
Appendix E	Surfac	e Water	Attenuation Calculations	
Appendix F	Irish W	ater Pre	-Connection Application	
Appendix G	6 Foul D	rainage	Network Calculations	
Appendix H	l Foul D	rainage	Longitudinal Sections	
Appendix I	Traffic a	& Transp	port Assessment	27

1 Introduction

This report has been prepared by Donnachadh O'Brien & Associates Consulting Engineers Ltd. (DOBA) on behalf of Kildare County Council in support of a Part 8 Planning Application for the proposed Civic Amenity Centre & Waste Transfer Facility

The proposed site is located on a c. 1.20 Ha Greenfield site 1,100m North-East of Celbridge Town, in the Townland of Kilmacredock Upper & Castletown. The site is bounded to the North by the M4 Motorway, to the South by the R449, to the West by Kildare County Council owned lands and to the East by a Local Authority materials storage depot. The site topography is generally flat with elevation ranging from +66.500mOD to +67.000mOD.

Figure 1 Site Location (outlined in red)

The overall development consists of the construction of 1.2Ha Civic Amenity Centre & Waste Transfer Facility with dedicated chargeable and non-chargeable waste areas, 4 single storey buildings which include a Staff Building, a Pay Station Building, Weighbridge Building and Household Hazardous Waste Storage Building together with all ancillary site development, landscape works and a new access onto the R449.

The existing site layout is indicated on drawings C-0010 while the proposed site layout is indicated on drawing C-0015.

This report outlines the proposed development works under the following areas:-

- Surface Water Drainage,
- Foul Water Drainage,
- Water Supply,
- Roads Infrastructure

The following report should be read in conjunction with the engineering drawings listed below, which are submitted in support of this planning application:-

- C-0001 Site Location Map
- C-0010 Site Plan Existing
- C-0015 Site Plan Proposed Works
- C-0016 Proposed Staff Building
- C-0017 Proposed Pay Station Building
- C-0018 Proposed Household Hazardous Waste Building
- C-0019 Proposed Weighbridge Building
- C-0020 Proposed Surface Water Drainage Layout
- C-0030 Proposed Foul Drainage Layout
- C-0040 Proposed Watermain Layout
- C-0050 Proposed Site Layout Sheet 1-of-2
- C-0051 Proposed Site Layout Sheet 2-of-2
- C-0060 Proposed Road Markings Sheet 1-of-2
- C-0061 Proposed Road Markings Sheet 2-of-2
- C-0070 Proposed Autotrack Access Sheet 1-of-2
- C-0071 Proposed Autotrack Access Sheet 2-of-2
- C-0080 Proposed Exit Sightlines
- C-0090 Proposed Treatment Plant Layout & Details
- C-0100 Proposed Typical Drainage & Manhole Details
- C-0110 Proposed Surface Water Attenuation Tank Details
- C-0120 Proposed Typical Siteworks Details
- C-0121 Proposed Site Boundary & Entrance Gate Details
- C-0130, C-0131, C-0132 Typical Watermain Details
- C-0140, C-0141 Proposed Road Long Sections with SW and FW Drainage
- C-0150 Proposed Site Sections

DONNACHADH O'BRIEN

& ASSOCIATES CONSULTING ENGINEERS

2 Planning Stage Site Investigation

IGSL were commissioned by DOBA to carry out a Planning Stage Site Investigation (refer to Appendix B for the SI Report) consisting of the following:-

- **Trial Pits to 2.00m and 2.20m BEGL**. Encountered ground conditions in TP01 included top soil overlying stiff sandy gravelly CLAY while TP02 included topsoil overlying stiff very gravelly clayey SILT with occasional cobbles.
- **BRE365 soakaway test at 2.0m BEGL:-** The infiltration rate calculated of 6.59x10⁻⁶m/s demonstrates unfavourable ground conditions for disposal of surface water to ground.
- Window Sampling:- 4 no. 100mm dia. cores of the sub soils were taken using Window Sampling methods. The recovered soil cores not topsoil in each of the 4 locations overlying firm to stiff brown or grey brown sandy gravelly SILT/ CLAY, typically containing cobble sized material.
- Site Characterisation:- Site Characterisation tests were carried out by Declan Kearns & Associates Consulting Engineers. The results of the EPA suite of "P" and "T" Tests note that a proprietary wastewater treatment system and sand polishing filter should be installed to treat a P.E. of 10.
- Plate Bearing Tests:- 3 No. PBTs were carried out and equivalent CBR values were calculated with second cycle results yielding results of 12.5% to 26.1% at 0.60m BEGL.

3 Surface Water Drainage

3.1 Existing Surface Water Drainage

There is existing surface water infrastructure located to the South of the proposed site associated with the R449.

3.2 Proposed Surface Water Drainage Strategy

The proposed surface water drainage strategy is as follows:-

- The site has been designed to store a 1:100 year rainfall event below ground in the form of Stormtech Parabolic Arched Attenuation Tank with 525m³ capacity. A minimum of 500mm free-board is to be provided to the lowest building FFL from the top of the attenuation tank system,
- The design of the attenuation system and pipe network for a 1:100 year event includes an allowance for 20% Climate Change,
- Surface Water discharge from the site shall be limited to 2.9 litres/ second using a flow control device fitted to the discharge manhole before entering into the public network via a new manhole constructed on the existing surface water line on the R449,
- Discharge from the site shall be treated through the provision of a suitably sized petrol interceptor installed after the last discharge manhole and before the connection to the public network.
- The design and management of surface water for the proposed development will comply with the policies and guidelines outlined in the Greater Dublin Strategic Drainage Study (GDSDS), SuDS principles and be in compliance with the Kildare County Development Plan surface water and drainage policies. Pipe sizes and gradients will be designed so as to achieve selfcleansing velocities as per the requirements of the Building Regulations Part 'H'.
- The calculations for the surface water drainage network are attached in Appendix C of this report. The proposed surface water drainage details are indicated on the following drawings:
 - o C-0020 Proposed Surface Water Drainage Layouts
 - o C-0110 Proposed Surface Water Attenuation Details
 - o C-0140, C-0141 Proposed Road Long Sections with SW and FW Drainage

4 Foul Drainage

4.1 Existing Foul Drainage

There is no public foul drainage infrastructure in the vicinity of the site.

4.2 Proposed Foul Drainage Strategy

The proposed foul drainage network design has been carried out in accordance with the Greater Dublin Regional Code of Practice for Drainage Works. Pipe sizes and gradients have been designed so as to achieve self-cleansing velocities as per the requirements of the Building Regulations Part 'H'. The calculations for the foul drainage network are attached in Appendix G of this report.

The proposed foul drainage details are indicated on the following drawings:-

- C-0030 Proposed Foul Drainage Layout
- C-0140, C-0141 Proposed Road Long Sections with SW and FW Drainage

The proposed foul network will collect effluent from the new buildings via a local piped network and discharge into a foul piped network located within the internal access roads of the proposed development. The proposed foul drainage network for the development will then discharge by gravity to a proprietary packaged wastewater treatment system (WWTS) and sand polishing filter. The WWTS and polishing filter have been designed in accordance with the EPA guidelines and based on the Site Characterisation report carried out in September 2018 (refer to Appendix B).

The new proprietary WWTS will consist of a primary and secondary proprietary packaged underground treatment tank and a sand polishing filter percolation area. The new WWTS and associated sand polishing filter has been designed to cater for a Population Equivalent (P.E.) of 10 in order to provide for adequate treatment and disposal of the final effluent for the proposed development.

The hydraulic loading of 20litres/person/day loading rate gives a total WWTS requirement of 1.20m³/day. The associated required sand polishing filter area is therefore calculated as follows:-

1,200 litres/day / 40 litres/m²/day = $30m^2$.

Based on this minimum required area, the proposed sand polishing filter is designed to be 37.50m² to provide adequate treatment.

The proposed WWTP system will allow for a discharge rate of 40l/m² of highly treated effluent to the sand polishing filter.

5 Watermains

5.1 Existing Water Supply

The Irish Water maps shows that there is an existing 225mm diameter HPPE located along the existing R449 to the South of the proposed development.

5.2 Proposed Water Supply

A new 150mm diameter HDPE PE-150 looped watermain proposed to be provided to the development with a bulk water meter provided on the new watermain, within the public domain, prior to entering the site. Hydrants will be located throughout the site such that no building is further than 46m away from a hydrant in accordance with Part B of the Building Regulations and the IW requirements. A scour valve will be located on the lowest section of the line and will to discharge to a foul manhole in accordance with the Irish Water requirements while an air valve will be located on the highest section of the line for maintenance in accordance with IW requirements. A Fire Flow Simulation Test shall be carried out at Detailed Design Stage to ascertain the existing flow and pressure in the existing 250mm dia. watermain located on the R449. It is not envisaged that there will be an issue with the minimum flows or pressure requirements in this watermain, however, any deficiencies with regard to Fire Flows shall be addressed through the provision of an underground firefighting water storage tank within the site.

The proposed watermains details are indicated on the following drawings:-

- C-0040 Proposed Watermain Layout
- C-0130, C-0131, C-0132 Typical Watermain Details

5.3 Water Demand Calculations

Commercial Demand

Occupancy = 10 persons (maximum) Consumption = 150 litres/ person/ day x 10 persons = 1,500 litres/ day Average hour daily demand 1,500 litres/ day x 1.25 = 1.875 litres/ day 1,875/ 24 x 60 x 60 = 0.02 litres / second Peak Hour Daily Demand 0.02 x 5 = 0.1 litres/ second

6 Flooding

6.1 Site Flood History and Flood Data

Information from the following sources has been reviewed in order to identify any existing flood risk to the site and proposed development

- Historic flood maps and reports from the OPW www.floodmaps.ie
- CFRAMS study
- OPW PFRA
- Celbridge Local Area Plan 2017-2023

6.2 Floodmaps.ie

The OPW have established a National Flood Hazard Mapping website, <u>www.floodmaps.ie</u>, which highlights areas at risk through collection of recorded data and observed flood events. The figure below is an extract from the OPW Flood Hazard Maps for the site. There are no historical flood events on the site.

Figure 2 Extract from Floodmaps.ie (site indicated in blue)

Ordnance Survey Ireland (OSi) provides a web based viewer of historic and current mapping at http://maps.osi.ie/publicviewer/. Historic mapping often includes "land liable to floods" and can be a useful indicator or historic flood risk. In the case of the proposed development, the site and surrounding lands do not indicate historical flooding occurrence.

6.3 CFRAMs

The subject site has not been identified as a flood risk area in the national Catchment Flood Risk Assessment and Management (CFRAM) study. The subject site has been designated as an area not subject to potential fluvial flooding under the OPW Preliminary Flood Risk Assessment.

6.4 OPW PFRA

The subject site has not been identified in the OPW Preliminary Flood Risk Assessment.

The figure blow is an extract from the PFRA drawing "Indicative extents and outcomes - Draft for Consultation 2019 / MAP / 237 / A Revision 0" which appears to indicate localized areas of pluvial flooding to the East of the site.



Figure 3 PFRA indicated Localised Pluvial Flooding to the East (proposed site outlined in red)

6.5 Celbirdge Local Area Plan 2017-2023

The LAP notes that Celbridge has been subject to a number of flood events in the past, however, the area around the proposed site has not been identified as an area susceptible to flooding.

6.6 Sources of Flooding

Following the guidance of the Planning Guidelines, Stage 1 of a Flood Risk Assessment requires the identification and consideration of potential sources of flooding. The potential sources of flooding at the proposed development site are as follows:-

- Fluvial
- Pluvial

6.7 Fluvial Flooding

Finalized Flood Hazard and Risk maps, as part of the Eastern CFRAM Flood Risk Management Plans, have not been produced for this site. The subject site has not been identified as an Area for Further Assessment as part of the Eastern CFRAM study and is not considered a flood risk area. Therefore, there is minimal risk of local fluvial flooding to the site or the proposed buildings and no further detailed assessment of fluvial flood risk is required.

6.8 Pluvial Flooding

Pluvial flooding is the result of rainfall-generated overland flows which arise before run-off can enter any watercourse or sewer. It is usually associated with high intensity rainfall. Flood risk from pluvial sources exists in all areas. Provision of adequate storm water drainage systems will minimize the risk from pluvial flooding sources the proposed surface water drainage network and associated infiltration drainage system (as described in Section 2 of this report) have been designed and adequately sized in accordance with GDSDS and best practise SUDS to accommodate flows in peak rainfall events. The drainage system has sufficient capacity to accommodate a 1 in 100 year storm event plus 20% Climate Change below ground. This will serve to significantly reduce any risk of pluvial flooding arising from the development of the site.

6.9 Sequential Approach and Justification Tests

The sequential approach and Justification tests procedures are outlined in 'The Planning System and Flood Risk Management Guidelines for Planning Authorities' 2009 and is summarized and adopted below. A sequential approach is a key tool in ensuring that development, particularly new development, is first and foremost directed towards land that is at low risk of flooding. The philosophy used in this approach is:-

- 1. Avoid preferably choose lower risk flood zones for new development
- 2. Substitute Ensure the type of development proposed is not especially vulnerable to the adverse impact of flooding
- 3. Justify Ensure that the development is being considered for strategic reasons
- 4. Mitigate Ensure flood risk is reduced to minimal levels
- 5. Proceed Only where Justification Test passed and emergency planning measures are in place

The figure below sets out the mechanism for the use of the sequential approach to development in flood areas from the planning perspective.

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS Zoning propo dev. propos Avoid Highly vulnerable and / or less vulnerable? Highly vulnerable? Substitute (No) No (Yes) Yes **Justification Test** Justify Pa ed Fail Prepare land use strategy / detailed pro for flood risk and surface water manager part of flood risk assessment tailed proposals nent as Mitigate Decision

Figure 4 Sequential approach mechanism in the planning process

The sequential approach makes use of flood risk assessment and of prior identification of flood zones for river and coastal flooding and classification of the vulnerability to flooding of different types of development as outlined in the tables below.

Vulnerability class	Land uses and types of development which include*:							
Highly vulnerable	Garda, ambulance and fire stations and command centres required to be operational during flooding;							
development (including	Hospitals;							
essential	Emergency access and egress points;							
infrastructure)	Schools;							
	Dwelling houses, student halls of residence and hostels;							
	Residential institutions such as residential care homes, children's homes and social services homes;							
	Caravans and mobile home parks;							
	Dwelling houses designed, constructed or adapted for the elderly or, other people with impaired mobility; and							
	Essential infrastructure, such as primary transport and utilities distribution including electricity generating power stations and sub-stations, water and sewage treatment, and potential significant sources of pollution (SEVESC sites, IPPC sites, etc.) in the event of flooding.							
Less vulnerable	Buildings used for: retail, leisure, warehousing, commercial, industrial and non-residential institutions;							
development	Land and buildings used for holiday or short-let caravans and camping, subject to specific warning and evacuation plans;							
	Land and buildings used for agriculture and forestry;							
	Waste treatment (except landfill and hazardous waste);							
	Mineral working and processing; and							
	Local transport infrastructure.							
Water-	Flood control infrastructure;							
compatible development	Docks, marinas and wharves;							
development	Navigation facilities;							
	Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible activities requiring a waterside location;							
	Water-based recreation and tourism (excluding sleeping accommodation);							
	Lifeguard and coastguard stations;							
	Amenity open space, outdoor sports and recreation and essential facilities such as changing rooms; and							
	Essential ancillary sleeping or residential accommodation for staff required by uses in this category (subject to a specific warning and evacuation plan).							
*Lises not listed here s	hould be considered on their own merits							

*Uses not listed here should be considered on their own merits

Figure 4 Classification of Vulnerability of different types of development

The figure below illustrates those types of development which would be appropriate to each flood zone and those which would be required to meet the Justification test.

-

	Flood Zone A	Flood Zone B	Flood Zone C
Highly vulnerable development (including essential infrastructure)	Justification Test	Justification Test	Appropriate
Less vulnerable development	Justification Test	Appropriate	Appropriate
Water-compatible development	Appropriate	Appropriate	Appropriate

Figure 5 Vulnerability of Development vs. Flood Zone

Flood Zone A – where the probability of flooding from rivers and the sea is highest (greater than 1% or 1 in 100 for river flooding or 0.5% or 1 in 200 for coastal flooding)

Flood Zone B – where the probability of flooding from rivers and the sea is moderate (between 0.1% or 1 in 1000 and 1% or 1 in 100 for river flooding and between 0.1% or 1 in 1000 year and 0.5% or 1 in 200 for coastal flooding)

Flood Zone C – where the probability of flooding from rivers and the sea is low (less than 0.1% or 1 in 1000 for both river and coastal flooding).

Based on Figure 2 we can designate that the site is located within Flood Zone C in accordance with Section 2.23 of the guidelines. Therefore the development is appropriate and there is no requirement for a justification test.

6.10 Summary

As described above, there is no risk from Fluvial Flooding based on the available OPW & CFRAMS data nor is there any risk from Pluvial Flooding. The site is located within Flood Zone C, therefore, no further detailed assessment is deemed necessary and the proposed development is not at risk from flooding.

7 Roads & Traffic

7.1 Existing Arrangement

The site is bounded to the North by the M4 Motorway, to the South by the R449, to the West by Kildare County Council owned lands and to the East by a Local Authority materials storage depot. There is an existing entrance off the R449 which serves the existing lands and Local Authority materials storage depot.

7.2 Proposed Arrangements

The Proposed Roads Layout and associated Siteworks details are indicated on the following drawings:-

- C-0050 Proposed Site Plan
- C-0060 Proposed Road Markings and Signage
- C-0070, C-0071 Proposed Autotrack Layout
- C-0080 Proposed Exit Sightlines
- C-0120 Typical Siteworks Details

7.2.1 Chargeable/ Non-Chargeable Waste Areas

The proposed site shall contain two designated areas for waste disposal and collection which are defined as chargeable and non-chargeable waste areas. The perimeter of each area will be provided with the relevant material containers/ skips which will be accessible by the public and will be served by a dedicated set down area located off the internal access roads. The internal circulation space within the waste disposal areas are provided for staff only and will be used to deliver and remove waste disposal containers/ skips via HGVs. The movements of such vehicles is shown on DR-C-0080 and DR-C0081.

7.2.2 Internal Roads

The proposed internal layout of the site includes a dedicated road network consisting of 4m wide oneway roads located around the perimeter of each waste disposal area. Appropriate signage and road markings are provided to guide visitors to each of the waste disposal areas at which a set down area is provided for off-loading of waste. The existing access to the KCC materials storage depot will be maintained with the access road re-surfaced and a new gate installed as shown on the drawings.

7.2.3 Car Park

A car park with provision for 7 no. car parking spaces is proposed to be provided to the South of the proposed Staff Building in accordance with the Table 15.2 of the Kildare County Development Plan where 1 car parking space is being provided per 33m² of gross floor area. 1 no. disabled car parking space is proposed in accordance with Section 1.4.4 of 'Buildings for Everyone' 2002 published by the National Disability Authority and Part M of the Building Regulations (S.I. No. 179, 2000).

7.2.4 Access onto R449

An existing access exists on the R449 to serve the LA materials storage depot and the KCC lands. It is proposed to move the location of this access further East as shown on the Proposed Site Plan C-0015. The R449 will be required to be locally widened as shown on C-0060 and DR-C-0061 to allow for the provision of a ghost island with right hand turning lane. The design of the ghost island junction has been carried out in accordance with Section 5.6.11 of TII Publication DN-GEO-03060 Geometric Design of Junctions.

7.3 Access and Permeability for Vulnerable Road Users (VRU)

The position of the existing footpath and cyclepath located to the South of the proposed site along the R449 shall be modified to suit the construction of the ghost island junction as described above. An uncontrolled pedestrian crossing point shall be provided at the entrance to the proposed facility. A series of set down areas throughout the site shall be provided along with dedicated footpaths for VRUs to safely access each of the waste disposal areas. Provision has been made for VRUs to cross the internal road network through the use of dropped kerbs and blister paving as indicated on DR-C-0050. Access to the internal waste disposal circulation spaces will be limited through appropriate road markings, fencing, gates and change in surface materials.

7.4 Exit Sightlines and Autotrack

Exit sightlines at the proposed development's exit location of 90m with a 4.50m set-back from the road edge have been provided in accordance with the NRA: DMRB for a 60kph road.

An auto track analysis has been carried out for the internal roads using the following vehicles:-

- 10.20m rigid HGV
- 16.48m articulated HGV
- 8.68m rigid Fire Tender
- 4.91m passenger SUV

The Proposed Autotarck analysis output is indicated on drawings C-0080.

7.5 Transport Assessment

AECOM were commissioned by Kildare County Council to prepare a Traffic and Transport Assessment (refer to Appendix I) to examine the following:-

- traffic and transport impact of the proposed development,
- access to the local area road network from the development,
- investigate the influence the net change in traffic will have on the local road network due to the additional traffic,
- review of existing conditions in terms of site accessibility,

- traffic surveys to identify existing traffic levels,
- percentage change assessment to identify the impact of the proposed development at the junctions within the study area during the AM and PM weekday peak

The principal findings of the Traffic and Transport Assessment are summarised as follows:-

- A review of the existing conditions in the vicinity of the proposed development confirms that the site is well situated, adjacent to the R449 and between the existing towns of Celbridge, Maynooth and Leixlip, as well as being near to West Dublin. It is situated just off the motorway system; with access onto the M4 approximately 300 metres to the northeast, via Junction 6. The nearest bus stop is approximately 1.1km from the site, located on the R405, with services into Celbridge and onwards to Dublin. Accident data was obtained from the Road Safety Authority for the last 10 year period up to the end of 2014which illustrates that four collisions have occurred within the study area, with one fatal collision. The data suggests that there are no existing safety issues which are likely to be exacerbated by the proposed development.
- Access to the site for all modes will be provided via a priority junction on the R449. There will be a footway into the site provided and there will be provision for 7 car parking spaces. In order to determine the level of trips generated by the proposed development, the Trip Rate Information Computer System (TRICS) database has been utilised. This identified that 116 two-way vehicular trips would occur in the AM peak, and 36 two-way vehicular trips would occur in the PM peak. Traffic data was gathered at the M4 Junction 6 Five-arm roundabout and the R449 / R405 Three-arm roundabout. A percentage increase assessment was then undertaken for these junctions. Base scenarios and with Development scenarios were created and compared for the years of 2020, 2025, and 2035. The results of the assessment confirm that there would not be an increase of 10% at either of the junctions. However, for robustness, a capacity assessment for the R449 / R405 Three-arm roundabout and the R449 / Site Access Priority Junction. The modelling results illustrate that the R449 / R405 Three-arm roundabout and the R449 / Site Access Priority Junction both operate within capacity in all modelled scenarios, and therefore no mitigation measures are required.
- It is considered that the impact of the development is acceptable and therefore it is considered that Kildare County Council should be able to provide a positive recommendation for approval of the application.

Appendix A Irish Water Watermains Web Map

LUG											
_	Surface	(=)	Other; Unknown	_:	Overflow	Ŧ	Soakaway	Ŧ	Treatment plant	_	Catchpit
_	Surface		Gully	÷	Soakaway	÷	Standard Outlet	÷	Pump station	:1:	Hatchbox
+	Cascade	÷	Standard	/ _ 1	Other; Unknown	1 - 1	Other; Unknown	_	Catchpit	Ę.	Lamphole
_	Catchpit	(-)	Other; Unknown		Storm Culverts	<u>.</u>	Rodding Eye	j	Gully	÷	Standard
:1:	Hatchbox	<u>17</u>	Vent/Col	9	Storm Clean Outs		Flushing Structure	÷	Standard	1 <u>-</u> 1	Other; Unknown
Ĥ.	Lamphole	$\ell = \ell$	Other; Unknown	Ą	Outfall	1., I	Other; Unknown	$\ell = 0$	Other; Unknown	<u></u>	Vent/Col
÷	Standard	÷	Outfall	_:	Overflow		Sewer Flow Control Valves		Cascade	(\pm)	Other; Unknown

KCC Civic Amenity Centre

-	Combined		Unknown		Orifice Plate	l <u>o</u> pe	District (Boundary Meter)
	Foul	—	Combined	(44	PRV	÷	Treatment Plant
-	Overflow	 -	Foul	(an)	PSV	H	Potable
	Unknown	_	Overflow		Other	:	Raw Water
-	Combined	_	Unknown	1 4 1	Open	÷	Pump Stations
	Foul	H	Non-return	FH	Closed		
	Overflow		Hydro	ы	Part Closed		

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated. © Irish Water

Irish Water

DONNACHADH O'BRIEN

& ASSOCIATES CONSULTING ENGINEERS

Appendix B Planning Stage Site Investigation

NEW AMENITY CENTRE CELBRIDGE CO KILDARE

DOBA CONSULTING ENGINEER

CONTENTS

Ι	INTRODUCTION
II	FIELDWORK
III	TESTING
IV	DISCUSSION

APPENDICES

I	WINDOW SAMPLES
II	DYNAMIC PROBES
III	TRIAL PITS
IV	BRE DIGEST 365
V	SITE CHARACTERISATION
VI	CBR BY PLATE BEARING TEST
VII	GEOTECHNICAL LABORATORY TEST DATA
VIII	SITE PLAN

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Boring Procedures.

Unless otherwise stated, the 'Shell and Auger' technique of soft ground boring has been employed. All boring operations sampling and/or logging of soils and in-situ testing complies with the recommendations of the British Standard Code of Practice BS 5930 (1981), 'Site Investigation' and BS 1377:1990, 'Methods of test for soils for civil engineering purposes'.

Whilst the technique allows the maximum data to be obtained in soft ground, some disturbance and variation of soft and layered soils is unavoidable. Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Where peat has been encountered during siteworks, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests, utilising either the standard split spoon sampler or solid cone and automatic trip-hammer are conducted unless otherwise where required by instruction. Subsequent to a seating drive of 150mm, a summation for the number of blows for 300mm penetration is recorded on the boring records together with the blow count for each 75mm penetration. In cases where incomplete penetration is obtained, the number of blows for the recorded value of penetration are noted. In coarse granular soils, a cone end is fitted to the sampler and a similar procedure adopted.

Groundwater.

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level.

Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage condition, tidal variation or other causes.

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

REPORT ON A SITE INVESTIGATION FOR A PROPOSED CIVIC AMENITY CENTRE AT CELBRIDGE

FOR KILDARE CO CO

DONNACHADH O'BRIEN AND ASSOCIATES (DOBA) CONSULTING ENGINEERS

Report No. 21145

SEPTEMBER 2018

I Introduction

A plot of land located near the M4 Celbridge Interchange is to be developed as an Amenity Centre for Kildare County Council. The site adjoins an existing county council compound.

An investigation of ground conditions in the area of the development has been ordered by DOBA Consulting Engineers, on behalf of Kildare County Council.

The programme of the investigation included trial pits, dynamic probes and window samples, to establish geotechnical criteria relating to the existing foundations. Work was carried out in accordance with BS 5930, Code of Practice for Site Investigations (1999) and the appropriate Eurocodes.

In addition a Site Suitability Assessment was carried out for on site foul treatment and one Soakaway Tests was carried out in accordance with BRE Digest 365.

A programme of laboratory testing to confirm geotechnical and environmental soil parameters followed site operations.

This report includes all factual data pertaining to the project and comments on the geotechnical findings relative to the proposed development.

II Fieldwork

A detailed site plan was provided by DOBA indicating the various exploratory locations. This is presented in Appendix VIII.

This plan sub-divides the site into three areas, with the Site Suitability Assessment carried out in Area 3.

The programme of the investigation included the following elements:

- Window Sample Cores at 4 locations to identify soil composition
- Heavy Duty Probing at each of the above locations to establish soil strength
- Trial Pit Excavations (One each in Area 1 and Area 3)
- Soakaway Test to BRE Digest 365 in Area 2.
- Site Suitability Assessment for Foul Treatment in Area 3.
- CBR Values by Plate Bearing Test
- Geotechnical Laboratory Tests
- Environmental Laboratory Tests

a. Window Sampling

100mm diameter cores of the sub soils were taken in four locations using Window Sampling Methods. The recovered soil core is extruded in the laboratory and detailed records are prepared. These records with photographs are presented in Appendix I

The records note topsoil in each location overlying firm to stiff brown or grey brown sandy gravelly SILT/CLAY, typically containing cobble sized material. This stratum is boulder clay or glacial till and is typical of the general area.

Sampling continued to refusal at depths between 1.00 and 2.00 metres. The refusal depths are not indicative of rock horizon. No ground water was noted during the course of the investigation.

b. Dynamic Probes

A tracked Competitor Probe Rig was used to establish a strength/depth pattern beside each window sample location. A 50kg hammer falling through 500mm is used to drive a 43.7mm diameter cone into the soil. Probing is in accordance with the DPH specification of BS 1377: Part 9: 1990. In these tests, the soil resistance is measured in terms of the number of drop-hammer blows required to drive the test probe through each 100 mm increment of penetration. The results are presented in both graphical and tabular form in Appendix I1. Probing is generally terminated following successive blow counts in excess of 25, to avoid damage to the apparatus.

Where very soft soils are encountered, the probe may penetrate the soil under self weight and blow counts of zero may be entered where this happens. Blow counts of zero do not signify a void, unless specifically mentioned.

The four probes confirm the presence of stiff to very stiff soils below surface topsoil. Probes all recorded relatively shallow refusal between 1.00 and 1.20 metres BGL.

c. Trial Pits

Trial Pit TP01 was located at the Site Suitability test location in Area 3. Top soil overlies stiff sandy gravelly CLAY which continued to a final depth of 2.20 metres.

Trial Pit TP02 was located in Area 1. Here topsoil overlies stiff very gravelly clayey SILT, with occasional cobbles. Excavation continued to 2.00 metres and both trial pits were dry.

Trial Pit records are contained in Appendix III.

d. BRE Digest 365 Soakaway

One soakaway test was carried out in Area 2. The test was performed in accordance with BRE Digest 365, over two stages following initial soakage. Test data including a detailed trial pit record are presented in Appendix IV. An infiltration Rate of 'f' = 0.0004 m/minute was calculated from the field data.

e. Site Characterisation

Site Suitability for foul water disposal was determined by Declan Kearns and Associates. Their detailed report is presented in Appendix V to this document

f. CBR by Plate Test

Plate bearing tests were carried out at three locations and equivalent CBR values were calculated. Results are presented in Appendix VI. CBR values on the initial load cycle range from 4.5 to 7.1% and on the second cycle increase to 12.5 to 26.1%.

III Testing

(a) Laboratory :

All samples from the site have been returned to the IGSL laboratory for initial visual inspection, a schedule of testing was prepared and tests as appropriate carried out.

The testing included the following elements and results are presented in Appendix VI1 Geotechnical Tests were carried out by IGSL in their INAB-Accredited facility. Chemical and environmental testing was carried out by CHEMTEST in their UKAS laboratory.

- a. Classification (Liquid and Plastic Limits)
- b. Grading Analysis
- c. Sulphate and pH
- d. RILTA Environmental.

Classification

The liquid and plastic limits were established for a samples of the gravelly clay. Values are tabulated with relevant moisture contents and plotted on the standard Casagrande Chart, falling both in the CI and Non-Plastic Zones. The results indicate that the soil matrix varies from clay to silt, is of uniformly low-plasticity with a high sensitivity to moisture content variation.

Grading (PSD)

Two samples of the boulder clay have had particle size distribution established by wet sieve hydrometer analysis. The straight line grading curves are typical of the local boulder clay deposition.

Sulphate and Ph

Sulphate Content and pH was established for two samples. Sulphate (2:1 Water Soluble) content is < 0.010 g/l. pH values range from 8.1 to 8.4. No special precautions are necessary to protect foundation concrete from sulphate aggression. A sulphate design class of DS-1 (ACEC Classification for Concrete) is indicated for concentrations less than 0.5 g/l.

RILTA Environmental Suite

One samples was submitted for RILTA Suite (WAC) analysis. The detailed test data indicates the material is classed as INERT. Excavated material from this site may be disposed of on site or removed to as suitably licensed landfill facility.

No Asbestos traces were detected during routine screening.

IV. Discussion:

The investigation has been carried out at a proposed County Council Depot in Celbridge.

The findings confirm that stiff brown gravelly silt or clay (boulder clay) is encountered directly below topsoil. The characteristics of the boulder clay are very well documented.

The soils will readily support loads of the order of 150 to 200 KPa on traditional strip or pad footings placed at 0.70 to 0.80 metres BGL.

CBR values are in excess to 5% indicating suitability of the sub soils for roads or paved areas.

BRE Digest 365 testing indicates low permeability in the boulder clay, with an infiltration rate of 0.0004 m/minute obtained.

Suitability of Area 3 of the site for foul water disposal has been determined by specialist environmental engineering consultant.

<u>IGSL/JC</u> <u>September 2018</u> Appendix I Window Sample Records

1.0

2.0

3.0

4.0

5.0

REPORT NUMBER

	WINDO	OWSA	MPLE	EREC	ORD			21	145	
	TRACT Celbridge Civic Amenity Centre					PROBE SHEET	NO.	WS01 Sheet		
	DRDINATES UND LEVEL (mOD)					-		NCED 31/07/2 TED 31/07/2		
	NT Kilmacredock Upper, Celbridge INEER Donnachadh O'Brien Consulting Engineers		-			SAMPL			avanagh insella	ו
Depth (m)	Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm dark brown TOPSOIL with rootlets Firm to stiff brown/light brown slightly sandy SILT with rare angular to subangular gravel	× × × × ×	0.12							
- - - 1.0	Stiff dark brownish grey sandy very gravelly SILT, rare 130mm subrounded cobble at 0.70m	××××××××××××××××××××××××××××××××××××××	1.10			0.00-1.00	100	250 blows		
	Firm dark brownish grey to dark grey sandy gravelly CLAY with occasional subrounded cobbles up to 80mm	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1.00-2.00	60	250 blows		
2.0	Obstruction - Pushing large cobble Final Depth 2.00m		2.00							
-3.0								-		
4.0										
5.0										

General Remarks

IGSL WS LOG 21145.GPJ IGSL.GDT 16/8/18 Installations

WINDOW SAMPLE RECORD

REPORT NUMBER

21145

-										
	TRACT Celbridge Civic Amenity Centre					PROBE SHEET	NO.	WS02 Sheet		
	DRDINATES UND LEVEL (mOD)							NCED 31/07/2 ETED 31/07/2		
CLIE ENG	NT Kilmacredock Upper, Celbridge INEER Donnachadh O'Brien Consulting Engineer	s	_	_		SAMPL			avanagł insella	ı
Depth (m)	Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm dark brown slightly sandy TOPSOIL with rootlets	× ×	0.15				1			
- - - - - - - - - - - - - - - - - - -	Firm to stiff brown/light brown slightly sandy SILT with rare angular to subrounded gravel Stiff to locally firm dark brownish grey sandy grav SILT with rare subangular to subrounded cobbles to 90mm Final Depth 0.90m	×°. ××	0.55			0.00-0.90	100	Ref blows		
2.0										
- 3.0 										
- 4.0 - -										
- - - 5.0										
-										
	eral Remarks									

WINDOW SAMPLE RECORD

REPORT NUMBER

	BSL WINDO	DW SA	MPLE	EREC	ORD			21	145	
	ITRACT Celbridge Civic Amenity Centre					PROBE SHEET		WS03 Sheet		
	ORDINATES DUND LEVEL (mOD)							NCED 31/07/2 ETED 31/07/2		
	INT Kilmacredock Upper, Celbridge INEER Donnachadh O'Brien Consulting Engineers					SAMPL			avanagh insella	ו
Depth (m)	Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 - - - -	Firm dark brown TOPSOIL with rootlets Firm to stiff brown slightly sandy SILT with rare fine to medium angular to subangular gravel	×o ×o ×o ×o ×o ×o ×o ×o ×o ×o ×o ×o ×o ×	0.20							
- - 1.0 -	Stiff greyish brown sandy SILT with occasional angular to subrounded gravel, increase in gravel content with depth	^o× ^ ; ×o × ^ ; × × × ; × × × ; × × × ; × × ;	0.95			0.00-1.00	100	Ref blows		
- - - - 2.0	Final Depth 1.50m	X 0X	1.50							
	×									
- - - - 4.0										
	ral Remarks									
Insta	lations									

WINDOW SAMPLE RECORD

REPORT NUMBER

1	BSL WINDO	21145								
	TRACT Celbridge Civic Amenity Centre					PROBE SHEET	NO.	WS04 Sheet		
	ORDINATES UND LEVEL (mOD)							NCED 31/07/2 TED 31/07/2		_
	NT Kilmacredock Upper, Celbridge NEER Donnachadh O'Brien Consulting Engineers					SAMPL			avanagł nsella	1
Depth (m)	Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
- 0.0 - - - -	Firm dark brown TOPSOIL with rootlets Stiff brown/light brown slightly sandy SILT with rare angular to subangular gravel (possibly made ground)	×o × × × × × × × × × ×	0.18							
- - - 1.0 -	Stiff dark greyish brown sandy SILT with occasional angular to subrounded gravel Firm dark brownish grey sandy gravelly CLAY, gravel	× × × × × × × × × × × × × × × × × × ×	0.70			0.00-1.00	100	215 blows		
-	is angular to subrounded Final Depth 1.80m		1.80			1.00-1.80	90	Ref blows		
2.0 - - - - - - -										
- 3.0 - - - - -										
- - - - -										
- - - - -									•	
Gene	ral Remarks									
	lations									

WS01 Box 1 of 1

WS02 Box 1 of 1

21145 – Celbridge Civic Amenity Centre – Window Sample Photography

WS03 Box 1 of 1

WS04 Box 1 of 1

IGSL Ltd.

Appendix II Dynamic Probes

1	1	
1	ENP	
	ദദ്ധ	1
1	1092	

DYNAMIC PROBE RECORD

REPORT NUMBER

21145

-

						1		1		
						PRC SHE	DBE NO. ET		DP01 Sheet 1 of 1	
CO-ORDINATES DATE DRILLED 31/07/2018							31/07/2018			
	ID LEVEL (mOD)	HAMMER MASS (kg)		50		DAT	E LOGG	ED	31/07/2018	
CLIENT		INCREMENT SIZE (mr	m)	100		PPO	PROBE TYPE DPH			
ENGINE	ER DOBA	FALL HEIGHT (mm)		500)	FRO				
Depth (m)	Geotechnical Description	n	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record	
0.0 .	End of Probe at 1.00 m					,	0.00 0.10 0.20 0.40 0.50 0.60 0.70 0.80 0.90	2 6 8 12 22 37 32 33 35 25		
2.0										
3.0										
4.0		-						-		
GROUND	WATER OBSERVATIONS					[1		

DYNAMIC PROBE RECORD

REPORT NUMBER

21145

						_			
	RACT Celbridge Civic Amenity Centre			1 1111111111111		PRC SHE	DBE NO. EET		DP02 Sheet 1 of 1
	RDINATES	DATE DRILLED 31/07/2018							
GROU	JND LEVEL (mOD)	HAMMER MASS (kg)		50 DATE LOGGED 31/07/2018 100			31/07/2018		
ENGI		FALL HEIGHT (mm)	,	500		PRC	PROBE TYPE DPH		
Depth (m)	Geotechnical Description	n	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record
2.0	End of Probe at 1.00 m						0.00 0.10 0.20 0.40 0.50 0.60 0.70 0.80 0.90	3 6 12 21 29 33 34 36 36 25	29 33 34 36 36
GROU	NDWATER OBSERVATIONS								
REMAI									

ET.								RE	PORT NUMBER		
IGSL	DYNA	AMIC PROBE R	ECO	RD					21145		
CONTRAC		1					PROBE NO. DP03 SHEET Sheet 1 of 1				
CO-ORDIN	ATES .EVEL (mOD)	HAMMER MASS (kg)		50		DAT	DATE DRILLED 31/07/2018 DATE LOGGED 31/07/2018				
CLIENT ENGINEER		INCREMENT SIZE (mi FALL HEIGHT (mm)	m)	100 500		PRC	PROBE TYPE DPH				
								nent)			
Depth (m)	Geotechnical Description		Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record		
0.0 .	of Probe at 1.20 m	γ.					0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10	4 10 11 12 8 13 21 22 23 28 33 25			
-3.0								-			
4.0								-			
GROUNDWA	ATER OBSERVATIONS										

1
(Find
ालडा.
(1992

DYNAMIC PROBE RECORD

21	145
∠ I	170

Jue -			4-223-march 10							
	CONTRACT Celbridge Civic Amenity Centre PROBE NO. DP04 SHEET Sheet 1 of 1									
CO-C	RDINATES						E DRILLI		31/07/2018	
GRO	JND LEVEL (mOD)	HAMMER MASS (kg)		50		DAT	E LOGG	ED	31/07/2018	
CLIE		INCREMENT SIZE (m	DROPE TYPE DDU							
ENG	NEER DOBA	FALL HEIGHT (mm)		500)	PRU	PROBE TYPE DPH			
0.0 Depth (m)	Geotechnical Descriptior	1	Legend	Depth (m)	Elevation (mOD)	Water	00 Depth (m)	ه Probe Readings (Blows/Increment)	Graphic Probe Record	
- 1.0	End of Probe at 1.20 m						0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10	5 13 15 12 16 28 24 26 28 24 37 25		
	INDWATER OBSERVATIONS									

Appendix III

Trial Pits

/	1									REPORT NU	JMBER	
	BSL	т	RIAL PIT	RECO	RD					21	145	
CON	TRACT	Celbridge Civic Amenity Centre						TRIAL P	IT NO.	TP02		
				-				SHEET			t 1 of 1	
LOG	GED BY	K. Kinsella	CO-ORDINAT					DATE ST				
CLIE	NT	Kilmacredock Upper, Celbridge GROUND LEVEL (m) EXCAVATION METHOD Donnachadh O'Brien Consulting Engineers METHOD							ATION D	JCB		
								Sampl		5	a)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm bro	m brown slightly sandy TOPSOIL with rootlets										
-	Stiff to firm brown sandy SILT with occasional gravel						AA98914	В	0.50-0.60			
- - - -	Firm to s cobbly S to 170m	tiff dark brownish grey sandy gravel ILT, cobbles are angular to subroun n	y slightly ded and up	૿ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	0.80	0.80						
		51		ୢୄୄ୰ୢୄୄୄୖୄୖୖୄୢୖୄୢୖୖୄୖୄ ଡ଼ୄୖଌୄୖୄୖୄୖୡୄୖୄୄୖୡୄୖ				AA98915	В	1.50-1.60		
2.0	End of T	rial Pit at 2.00m			2.00							
Grou Dry	indwater C	onditions										
ыу												
Stabi Stabi	ility le											
Gene	eral Remar	ks										

IGSL TP LOG 21145.GPJ IGSL.GDT 2/8/18

	1								F	REPORT NU	JMBER	
	35L	т	RIAL PIT	RECO	RD					21	145	
CON	TRACT	Celbridge Civic Amenity Centre						TRIAL P	IT N <mark>O</mark> .	TP/S	6A01	
					7 1989			SHEET			t 1 of 1	
LOG	GED BY	K. Kinsella	CO-ORDINAT	ES				DATE ST			/2018 /2018	
CLIE	INEER	Kilmacredock Upper, Celbridge Donnachadh O'Brien Consulting Eng	GROUND LE	VEL (m)				EXCAVA METHOD		JCB		
							3	Samples		a)	meter	
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
- 0.0	Firm bro	wn slightly sandy TOPSOIL with roc	tlets	14 . 14 . 14	0.20				Env	0.10-0.10		
F	Firm ligh and root	t brown sandy slightly gravelly SILT	with plastic									
-	Stiff to fi	rm brown sandy gravelly slightly cob are subangular to subrounded and	obly SILT, up to 120mm	×××××				AA98911	В	0.50-0.60		
- - 1.0 -	Firm to s	tiff dark brownish grey sandy grave	lly slightly	× × ×	2 × 1.10			AA98912	В	1.00-1.10		
-	to 170m	m										
-	End of T	rial Pit at 2.00m	×	2.00			AA98913	В	1.90-2.00			
-												
3.0												
E												
- 4.0												
-		1									248	
-												
-												
Gro	indwator (Conditions										
Dry												
Stab Stab	ility le											
	eral Rema i kaway test	ks carried out										

IGSL TP LOG 21145.GPJ IGSL.GDT 2/8/18

Appendix IV BRE Digest 365

7

ontract: est No. ngineer	SA01 (1st Donnachad	Civic Amenity Centre Contract cycle) Ih O'Brien Consulting Engineers	No. 21145
Date:	21.07.201		
	of ground co		Cround water
from	to	Description	Ground water
0.00	0.20	Firm brown slightly sandy TOPSOIL with rootlets	
0.20	0.45	Firm light brown sandy slightly gravelly SILT with plastic and rootlets	No water
0.45	1.10	Stiff to firm brown sandy gravelly slightly cobbly SILT, cobbles up to 120n	hm
1.10	2.00	Firm to stiff dark brownish grey sandy gravelly slightly cobbly SILT	
ield Data		<u>Field Test</u>	
Depth to	Elapsed	Depth of Pit (D)2.00Width of Pit (B)0.40	m
Water	Time		m
(m)	(min)	Length of Pit (L) 1.90	m
1 200	0.00		
1.360	0.00	Initial depth to Water = 1.36	m
1.380	1.00	Final depth to water = 1.530	m
1.390	2.00	Elapsed time (mins)= 60.00	
1.390	3.00		
1.400	4.00	Top of permeable soil	m
1.400	5.00	Base of permeable soil	m
1.400	6.00		
1.410	7.00		
1.410	8.00		
1.420	9.00		_
1.420	10.00	Base area= 0.76	m2
1.430	12.00	*Av. side area of permeable stratum over test period 2.553	m2
1.440	14.00	Total Exposed area = 3.313	m2
1.450	16.00		
1.450	18.00		
1.460	20.00		
1.470	25.00		
1.490	30.00		
1.510	40.00	Infiltration rate (f) = Volume of water used/unit exposed area / uni	t time
1.530	60.00		
		f= 0.00065 m/min or 1.08327E-0)5 m/sec
		Depth of water vs Elapsed Time (mins)	
	70.00		7
	60.00	•	_
	50.00		-
L	40.00 ·		-
-	50.00 · 40.00 · 30.00 ·	+	-
ī	-	* *	
Î.	10.00 · 0.00 ·	· · * * * *	
1		350 1.400 1.450 1.500 1 Depth to Water (m)	.550
		Double to Motor (m)	

		esign f-value from fi		IGS
		ivic Amenity Centre	Contract	No. 21145
est No.	SA01 (2nd			
ngineer		h O'Brien Consulting Engineers		
ate:	21.07.201			
	of ground co			
from	to	Description		Ground water
0.00	0.20	Firm brown slightly sandy TOPSOIL with roo		N
0.20	0.45	Firm light brown sandy slightly gravelly SIL		No water
0.45	1.10	Stiff to firm brown sandy gravelly slightly o		nm
1.10	2.00	Firm to stiff dark brownish grey sandy grav	elly slightly coddly SIL I	
ield Dete		<u>Field Test</u>		
ield Data		<u>Fleid Test</u>		
Depth to	Elapsed	Depth of Pit (D	2.00	m
Water	Time	Width of Pit (B		
(m)	(min)	Length of Pit (I		m
(iii)	(min)	Length of Fit (t	-)	
1.270	0.00	Initial depth to	Water = 1.27	m
1.280	1.00	Final depth to		m
1.290	2.00	Elapsed time (r		———————————————————————————————————————
1.300	3.00	Liapseu time (i		
1.300	4.00	Top of permeal	ale soil	m
1.310	5.00	Base of permea		m
1.310	6.00	Dase of betties		
1.320	7.00			
1.320	8.00			
1.320	9.00			
1.330	10.00	Base area=	0.76	m2
1.330	12.00	*Av. side area of permeable stratum over t		m2
1.340	14.00	Total Exposed		m2
1.350	16.00			
1.360	18.00			
1.360	20.00			
1.370	25.00			
1.370	30.00			
1.380	40.00	Infiltration rate (f) = Volume of wate	er used/unit exposed area / un	it time
1.390	60.00	· · · · · · · · · · · · · · · · · · ·	Inter selections for the second se	
		f= 0.0004 m/min	or 6.59379E-0)6 m/sec
		Depth of water vs Elapsed Time	(mins)	
		Depth of water vs Elapsed Time	(mins)	
	70.00 -	Depth of water vs Elapsed Time	(mins)	7
		Depth of water vs Elapsed Time	(mins)	
	60.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 -	Depth of water vs Elapsed Time	(mins)	
(entropy of the second s	60.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 -	Depth of water vs Elapsed Time	(mins)	
Verita	60.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 - 50.00 - 40.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 - 50.00 - 40.00 - 30.00 - 20.00 -	Depth of water vs Elapsed Time	(mins)	
	60.00 -	Depth of water vs Elapsed Time	(mins)	
Verier Verier Freezenser	60.00 - 50.00 - 40.00 - 30.00 - 20.00 - 10.00 - 0.00 -		· · · · · · · · · · · · · · · · · · ·	.400
Veries Veries T	60.00 - 50.00 - 40.00 - 30.00 - 20.00 - 10.00 - 0.00 -		4 4 340 1.360 1.380 1	.400
Contract To Lorenze I	60.00 - 50.00 - 40.00 - 30.00 - 20.00 - 10.00 - 0.00 -	60 1.280 1.300 1.320 1.3	4 4 340 1.360 1.380 1	.400

Appendix V Site Characterisation Test

.

APPENDIX B: SITE CHARACTERISATION FORM

File Reference: TEST LOCATION NO. 3 - SEE SITE LAYOUT PLAN

1.0 GENERAL DETAILS (From planning application)

Prefix: First Name: Surname:
Address: Site Location and Townland: CELBRIDGE CIVIC AMENITY CENTRE, M4 CELBRIDGE INTERCHANGE, CO. KILDARE CELBRIDGE CIVIC AMENITY CENTRE, M4 CELBRIDGE INTERCHANGE, CO. KILDARE
Telephone No: Fax No:
E-Mail:
Maximum no. of Residents: 0 No. of Double Bedrooms: No. of Single Bedrooms:
Proposed Water Supply: Mains 🖌 Private Well/Borehole Group Well/Borehole
2.0 GENERAL DETAILS (From planning application)
Soil Type, (Specify Type): TLs, Till derived chiefly from limestones
Aquifer Category: Regionally Important Locally Important LI Poor
Vulnerability: Extreme High Moderate 🖌 Low High to Low Unknown
Bedrock Type: Lucan Formation. Dinantian Upper Impure Limestones.
Name of Public/Group Scheme Water Supply within 1 km:
Groundwater Protection Scheme (Y/N): No Source Protection Area: SI SO
Groundwater Protection Response: R1
Presence of Significant Sites None Noted (Archaeological, Natural & Historical):
Past experience in the area: NO
Comments: (Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).
THE GROUNDWATER IS A TARGET RISK.
Population Equivalent of 10 provided by DOBA Consulting Engineers.
Note: Only information available at the desk study stage should be used in this section.

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment									
Landscape Position	ELAT								
Slope:	Steep (>1:5)	Shallow (1:5-1:20)	Relatively Flat (<1:20)						
Surface Features within a minimum of 250m (Distance To Features Should Be Noted In Metres)									
Houses: NO RESIDENTIAL HOUSE WITHIN 250M.									
Existing Land Use: KILDARE COUNTY COUNCIL DEPOT									
Vegetation Indicator	rs: NONE NOTED WITHIN 250M								
Groundwater Flow [Direction: UNKNOWN								
Ground Condition:	FIRM								
Site Boundaries:	>3M								
Roads:	>15M								
Outcrops (Bedrock	And/Or Subsoil): None Noted								
Surface Water Ponc	ling: None Noted within 250m	Lakes: None Noted within 250m							
Beaches/Shellfish:	None Noted within 250m	Areas/Wetlands: None Noted w	vithin 250m						
Karst Features: No	ne Noted within 250m								
Watercourse/Stream	n*: None Noted within 250m								
Drainage Ditches*:	None Noted within 250m								
Springs / Wells*:	PROPOSED POLISHING FILTER TO BE	E >40M FROM ANY WELL							

Comments:

(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the wastewater and the location of the proposed system within the site).

THE GROUNDWATER IS A TARGET RISK.

*Note and record water level

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas, which are at or adjacent to significant sites (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial hole (m): 2.10								
Depth from gr to bedrock (m	Contract of the second s		oth from grou vater table (m		2.10			
Depth of wate	r ingress:	Rock type	e (if present):					
Date and time	of excavation: 31	/07/2018 09:3	Date a	nd time of examinati	ion: 02/08/2018	3 09:15		
Depth of P/T Test*	Soil/Subsoil Texture & Classification**	Plasticity and dilatancy***	Soil Structure	Density/ Compactness	Colour****	Preferential flowpaths		
0.1 m P 0.2 m P	TOPSOIL	Threads 2, 3, 3 Ribbon110,100,120 Not dilatant	Crumb	Firm	Brown	Random		
0.3 m P 0.4 m P 0.5 m T 0.6 m T 0.7 m T 0.8 m T 0.9 m 1.0 m 1.1 m	Sandy gravelly CLAY (mottled from 0.30m)	Threads 2, 3, 3 Ribbon110,120,100 Not dilatant	Structureless Massive	Firm	Grey mottled brown	Random		
1.2 m 1.3 m 1.4 m 1.5 m 1.6 m 1.7 m 1.8 m 1.9 m 2.0 m 2.1 m	Very sandy very gravelly CLAY	Threads 3, 2, 4 Ribbon100,110,100 Not dilatant	Structureless Massive	Stiff	Grey brown	Random 1		
2.2 m 2.3 m 2.4 m 2.5 m 2.6 m 2.7 m 2.8 m 2.9 m 3.0 m						1		

Likely T value:

Note: *Depth of percolation test holes should be indicated on log above. (Enter P or T at depts as appropriate). ** See Appendix E for BS 5930 classification.

*** 3 samples to be tested for each horizon and results should be entered above for each horizon.

**** All signs of mottling should be recorded.

3.2 Trial Hole (contd.) Evaluation:

oundwater and t	ndwater and bedrock were not encountered at the excavated depth of 2.10m.								

Step 1: Test Hole Preparation

Percolation Test Hole	1	2	3						
Depth from ground surface to top of hole (mm) (A)	500	500	500						
Depth from ground surface to base of hole (mm) (B)	900	900	900						
Depth of hole (mm) [B - A]	400	400	400						
Dimensions of hole [length x breadth (mm)]	300 x 300	300 x 300	300 x 300						
Step 2: Pre-Soaking Test Holes									
Date and Time pre-soaking started	02/08/2018 09:25	02/08/2018 09:25	02/08/2018 09:25						
Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.									
Step 3: Measuring T ₁₀₀									
Percolation Test Hole No.	1	2	3						
Date of test	03/08/2018	03/08/2018	03/08/2018						
Time filled to 400 mm	09:45	09:45	09:45						
Time water level at 300 mm	11:05	13:45	12:57						
Time to drop 100 mm (T ₁₀₀)	80.00	240.00	192.00						
Average T			170.67						

Average T₁₀₀

If $T_{100} > 300$ minutes then T-value >90 – site unsuitable for discharge to ground If $T_{100} \le 210$ minutes then go to Step 4; If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{100} \leq 210$ minutes)

Percolation Test Hole		1			2			3		
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	
1	11:05	12:49	104.00	13:45	18:12	267.00	12:57	16:43	226.00	
2	12:53	15:05	132.00	18:16	23:07	291.00	16:46	20:42	236.00	
3	15:09	17:49	160.00	23:08	04:20	312.00	20:47	01:11	264.00	
Average ∆t Value			132.00			290.00			242.00	
	Average $\Delta t/4 =$ Average $\Delta t/4 =$ Average $\Delta t/4 =$ [Hole No.1]33.00 (t1)[Hole No.2]72.50 (t2)[Hole No.3]60.50 (t3)									
Result of Te	st: =		55.33 (m	in/25 mm)						
Comments:										
T = 55. T Test	T = 55. T Test passed. Due to soil mottling at 0.30m, a P test was required.									

Step 5: Modified Method (where $T_{100} > 210$ minutes)

Percolation Test Hole No.	1				2				3			
Fall of water in hole (mm)	Time Factor = T _r	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{ts}	Time Factor = T _r	Time of fall (mins) = T _m	K _{rs} = T _r / T _m	T – Value = 4.45 / K _{rs}	Time Factor = T _f	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}
300 - 250	8.1	_			8.1				8.1			
250 - 200	9.7				9.7				9.7	_		
200 - 150	11.9				11.9				11.9			
150 - 100	14.1				14.1				14.1			
Average T- Value												
Result of Tes	st: T =			0.00	min/25 n	nm)						
Comments:												

3.3(b) Percolation ("P") Test for Shallow Soil / Subsoils and/or Water Table

Step 1: Test Hole Preparation

Percolation Test Hole	1	2	3						
Depth from ground surface to top of hole (mm)	0		0						
Depth from ground surface to base of hole (mm)	400	400.00	400						
Depth of hole (mm)	400	400	400						
Dimensions of hole [length x breadth (mm)]	300 × 300	300 × 300	300 × 300						
Step 2: Pre-Soaking Test Holes									
Date and Time pre-soaking started	02/08/2018 09:25	02/08/2018 09:25	02/08/2018 09:25						
Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.									
Step 3: Measuring P ₁₀₀									
Percolation Test Hole No.	1	2	3						
Date of test	03/08/2018	03/08/2018	03/08/2018						
Time filled to 400 mm	09:45	09:45	09:45						
Time water level at 300 mm	11:45	12:25	13:45						
Time to drop 100 mm (P ₁₀₀)	120.00	160.00	240.00						
Average P ₁₀₀			173.33						

If $P_{100} > 300$ minutes then P-value >90 – site unsuitable for discharge to ground If $P_{100} \le 210$ minutes then go to Step 4; If $P_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $P_{100} \leq 210$ minutes)

Percolation Test Hole		1			2			3	
					2			5	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)
1	11:45	14:01	136.00	12:25	15:25	180.00	13:45	18:05	260.00
2	14:05		156.00	15:29		204.00	18:08	22:52	284.00
3	16:45	19:49	184.00	18:57	22:49	232.00	22:56	04:08	312.00
Average ∆p Value			158.67			205.33			285.33
	Average ∆p [Hole No.1]		39.67 (p ₁)	Average ∆r [Hole No.2]		51.33 (p ₂)	Average ∆p [Hole No.3]		71.33 (p ₃)
Result of Te	st: P =		54.11 (mir	1/25 mm)					
Comments:									
P = 54 : P Test	Passed. A rais	sed polishing f	ilter will be req	uired due to the	e mottled soil a	at 0.30m.			

Step 5: Modified Method (where $P_{100} > 210$ minutes)

Percolation Test Hole No.	1				2				3			
Fall of water in hole (mm)	Time Factor = T _f	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{fs}	Time Factor = T _r	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{fs}	Time Factor = T _r	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{fs}
300 - 250	8.1				8.1				8.1			
250 - 200	9.7				9.7				9.7			
200 - 150	11.9				11.9				11.9			
150 - 100	14.1				14.1				14.1			
Average P- Value	P- Value	e Hole 1=	= (p ₁)	0.00	P- Value	Hole 1=	(p ₂)	0.00	P- Value	e Hole 1=	= (p ₃)	0.00
Result of Test: P =0.00 (min/25 mm)												
Comments:												

4.0 CONCLUSION of SITE CHARACTERISATION

Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater.

Not Suitable for Development		
Suitable for ¹		Discharge Route
1. Septic tank system (septic tank and percolation area)	No	Discharge to Ground Water
2. Secondary Treatment System		
 a. septic tank and filter system constructed on-site and polishing filter; or 	Yes	
b. packaged wastewater treatment system and polishing filter	Yes	,

5.0 RECOMMENDATION

Propose to install:	Packaged wastewater treatment system and polishing filter						
and discharge to:	Ground Water						
Trench Invert level (m):	-0.30						
Site Specific Conditions	s (e.g. special works, site improvement works testing etc.						
The area of distribution grave	el below the sand filter (A1) is based on the following calculation:						
A1 = 0.125 x T (m2 per P.E.)							
A1= 0.125 x 55 = 6.875 x 10	(P.E)						
A1 = 68.75m2, say 70m2							
The area of the sand polishir	ng filter (A2) is based on the following calculation :						
A2 = 150L x P.E. / Loading F	late						
A2 = 150L x 10/ 40L/m2/day							
A2 = 37.5m2							
A sand polishing filter is recommended and should be installed in accordance with Table 8.2, Table 10.2 and Figure 8.5, EPA CoP 2009 and Treatment Systems for Small Communities, Business, Leisure Centres and Hotels, under the supervision of a suitably qualified engineer. The sand filter should have a minimum thickness of 900mm of free-draining unsaturated soil between the point of infiltration of the effluent and the water table or bedrock.							
Alternatively an Ecoflo Coco	Filter® can be used laid on a 300mm 70m2 layer of vented distribution gravel.						
	d and certified by a suitably qualified Civil Engineer or similar qualified person approved by the Local Authority. In treatment system suppliers that the system has been installed and is functioning correctly, should be obtained						
The client must enter a main minimum of once a year) by	tenance contract and the system should be serviced periodically. The tank should be de-sludged periodically (a a licensed contractor.						
¹ note: more than one option may	be suitable for a site and this should be recorded						
2 A dispharap of powago offluent	to "watere" (definition includes any or any part of any river stream lake canal reservoir aquifer pand watereourse or other						

² A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.6.2.

6.0 TREATMENT SYSTEM DETAILS

SYSTEM TYPE: Septio	: Tank Syste	m				1
Tank Capacity (m³)		Percolation Area			Mou	inded Percolation Area
		No. of Trenches			No.	of Trenches
		Length of Trenche	es (m)	Lenç	gth of Trenches (m)
		Invert Level (m)			Inve	rt Level (m)
SYSTEM TYPE: Secor	ndary Treatm	ient System				1
Filter Systems						Package Treatment Systems
Media Type	Area (m²)*	Depth of F	-ilter	Invert Level		Туре
Sand/Soil						See Site Suitability Report
Soil						Capacity PE 10.00
Constructed Wetland						Sizing of Primary Compartment
Other						3.50 m ³
SYSTEM TYPE: Tertian	ry Treatment	System				ì
Polishing Filter: Surfa	ce Area (m²)	* 37.50	Pa	ckage Treatme	nt Sys	stem: Capacity (pe) 10.00
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE:			Co	nstructed Wetl	and: S	Surface Area (m²)*
Groundwater	Hydra	ulic Loading Rate	* (l/n	1 ² .d) 40	.00	
Surface Water **	-	arge Rate (m³/hr)				
TREATMENT STANDA	RDS:					
Treatment System Perf	ormance Sta	andard (mg/l) E	30D	SS	NH	4 - N Total N Total P
See Site Suitability Report &	EPA CoP 2009	Table 5.1 page 9				
QUALITY ASSURANC	E:	1				
Installation & Commiss	ioning		7	On-going Mainte	nance)
Installation should be superv Civil Engineer or similar qua Authority. Confirmation from that the system has been ins should be obtained by the cl	lified person ap the effluent treast alled and is fu	proved by the Local atment system supplier		be serviced periodic	ally. Th	ntenance contract and the system should he tank should be de-sludged periodically by a licensed contractor.
* Hydraulic loading rate is detern ** Water Pollution Act discharge						

7.0 SITE ASSESSOR DETAILS

Company: DECLAN KEARNS & ASSOCIATES LTD.
Prefix: Mr. First Name: DECLAN Surname: KEARNS
Address: TULLYWEST, KILDARE, CO. KILDARE
Qualifications/Experience: B.Eng., NCEA Dip. Env. Eng., NCEA, Cert. Eng., MIEI, FETAC CERT EF 241859 722383
Date of Report: 04/08/2018
Phone: 0862111590 Fax: e-mail info@dkassociates.ie
ndemnity Insurance Number: PC006257T
Digitally signed by Declan Kearns DN: cn=Declan Kearns, o=DKAL, ou, email=info@dkassociates.ie, c=IE Date: 2018.08.16 17:06:30 +01'00'

\$

1

EPA Test No. 3 at Celbridge Civic Amenity Centre, Celbridge Interchange, Co. Kildare



Figure 1. Trial Pit

Figure 2. T- Test 1

Figure 3. T- Test 2

Figure 4. T- Test 3

Figure 5. P- Test 1

Figure 6. P- Test 2

EPA Test No. 3 at Celbridge Civic Amenity Centre, Celbridge Interchange, Co. Kildare

Figure 7. P- Test 3

Figure 8. View of site

Option 1- Site Layout

DONNACHADH O'BRIEN

& ASSOCIATES CONSULTING ENGINEERS

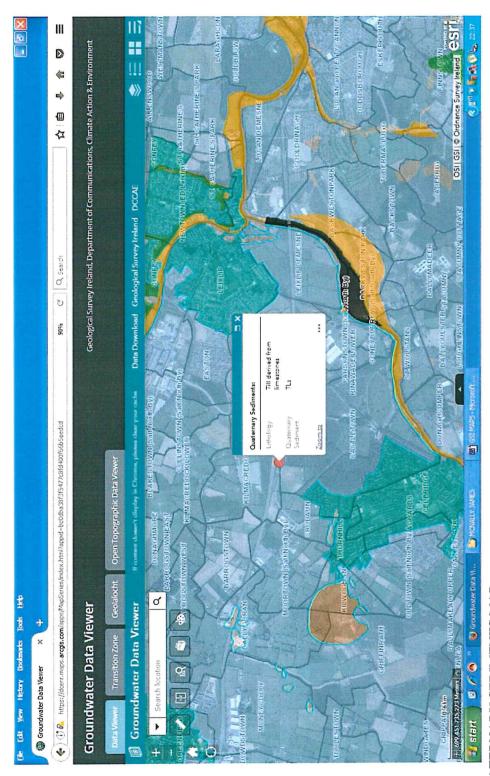
1 No. trial pit and Site Suitability Assessment Testing for on site foul treatment and discharge to ground to EPA Code of Practice: Wastewater Treatment and Disposal Systems Serving Single Houses (p.e < 10).

PLANE AND

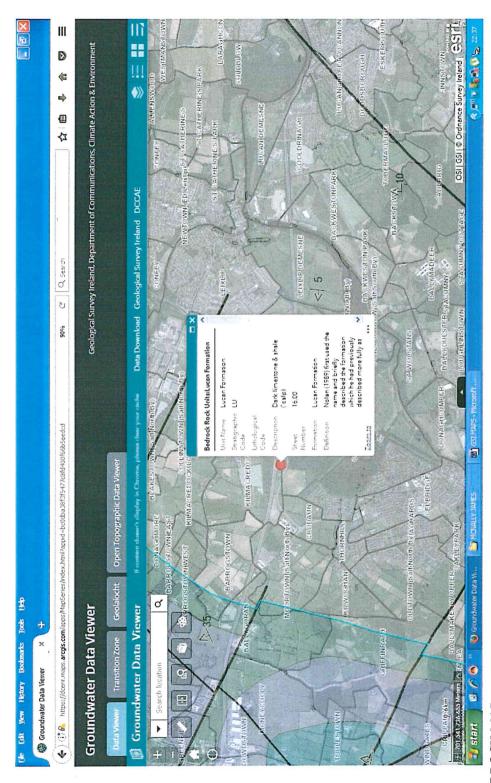
recreation the

Indicates formation of the second sec HIIII ന Name of Street, Street tours in which sources ANNAL OF AND A B d d d d Dian COMP 1 No. High level P- test at 300mm below EGL for high level infiltration rate (for permeable paving design) a man 065 mil I No BRE365 soakaway test at approx 2m Location 1 & 2 1 No. borehole 1 No. CBR test 1 No. trial pit A D B AND DESCRIPTION OF A DE 0-0

VULNERABILITY MAP

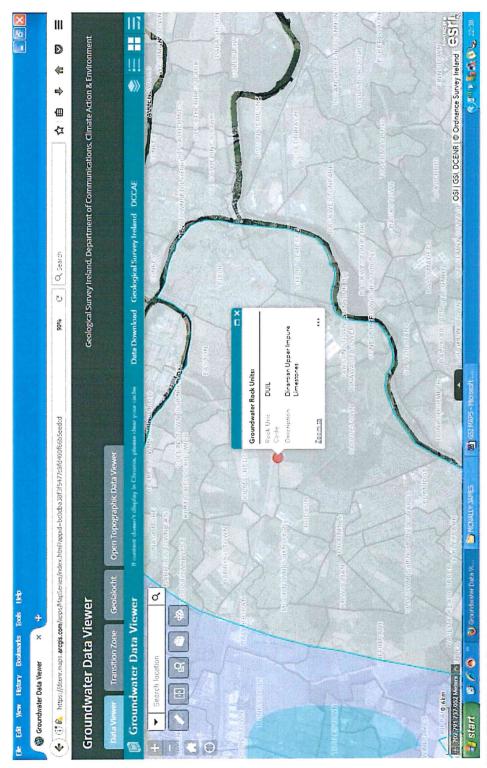


AQUIFER MAP

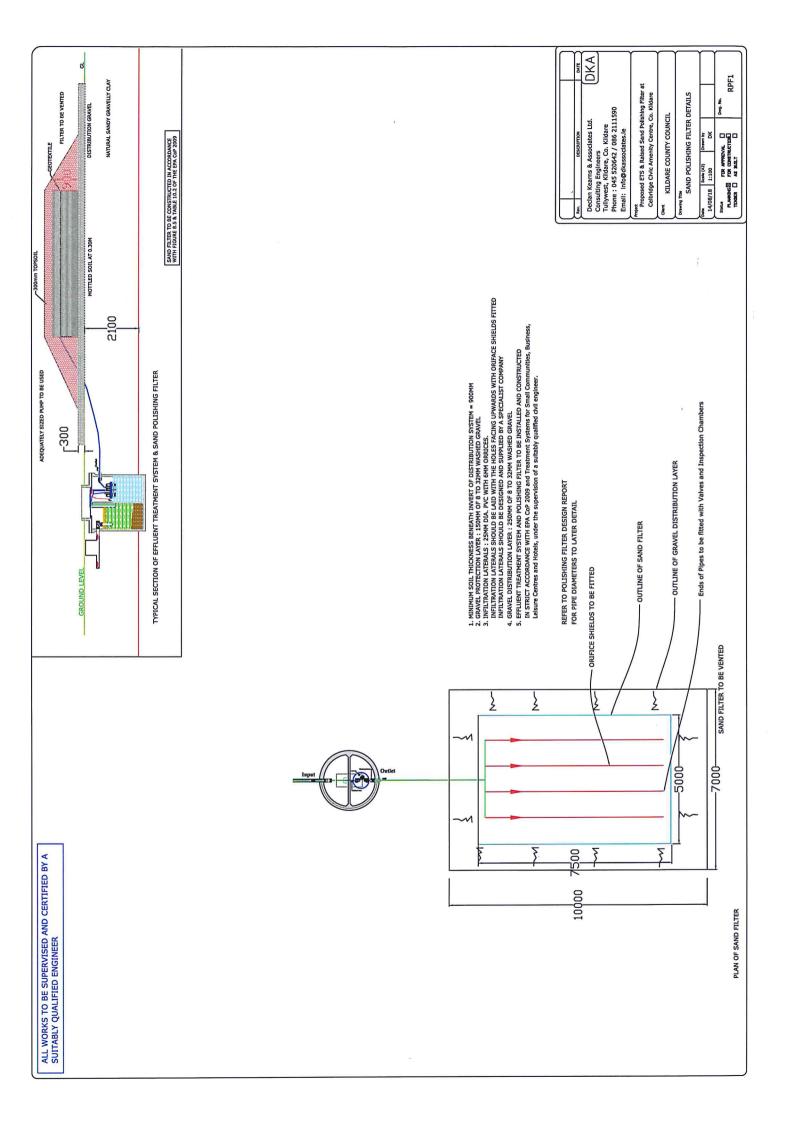


SOILS MAP

ł



QUATERNARY SEDIMENTS MAP



BEDROCK MAP

-

GROUNDWATER ROCK MAP

Site : Proposed Celbridge Civic Amenity Centre, Celbridge Interchange, Co. Kildare. P Test No. 2 - See Site Layout Plan.

3.3(b) Percolation ("P") Test for Shallow Soil / Subsoils and/or Water Table

Step 1: Test Hole Preparation

Percolation Test Hole	1	2	3						
Depth from ground surface to top of hole (mm)	0	0	0						
Depth from ground surface to base of hole (mm)	400	400.00	400						
Depth of hole (mm)	400	400	400						
Dimensions of hole [length x breadth (mm)]	300 X 300	300 X 300	X 300						
Step 2: Pre-Soaking Test Holes									
Date and Time pre-soaking started	02/08/2018 09:35	02/08/2018 09:35	02/08/2018 09:35						
Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.									
Step 3: Measuring P ₁₀₀									
Percolation Test Hole No.	1	2	3						
Date of test	03/08/2018	03/08/2018	03/08/2018						
Time filled to 400 mm	09:54	09:54	09:54						
Time water level at 300 mm	11:58	11:18	14:02						
Time to drop 100 mm (P ₁₀₀)	124.00	84.00	248.00						
Average P ₁₀₀			152.00						

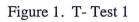
1

÷

If $P_{100} > 300$ minutes then P-value >90 – site unsuitable for discharge to ground If $P_{100} \le 210$ minutes then go to Step 4;

If $P_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $P_{100} \leq 210$ minutes)


Percolation Test Hole	1				2		3			
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	
1	11:58	14:14	136.00	11:18	12:54	96.00	14:02	18:30	268.00	
2	14:18	16:54	156.00	12:58	14:54	116.00	18:34	23:26	292.00	
3	16:59	20:03	184.00	14:57	17:17	140.00	23:29	04:49	320.00	
Average ∆p Value			158.67			117.33			293.33	
	Average ∆p [Hole No.1]		39.67 (p ₁)	Average ∆p [Hole No.2]		29.33 (p ₂)	Average ∆ı [Hole No.3		73.33 (p ₃)	
Result of Tes	st: P =		47.44 (mir	1/25 mm)						
Comments:										
P Test result =	47									

Step 5: Modified Method (where $P_{100} > 210$ minutes)

Percolation Test Hole No.	1			2				3				
Fall of water in hole (mm)	Time Factor = T _f	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{fs}	Time Factor = T _r	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{fs}	Time Factor = T,	Time of fall (mins) = T _m	K _{ts} = T _t / T _m	P – Value = 4.45 / K _{fs}
300 - 250 250 - 200 200 - 150 150 - 100 Average P- Value	8.1 9.7 11.9 14.1 P- Value		= (p ₁)	0.00	8.1 9.7 11.9 14.1 P- Value	Hole 1=	(p ₂)	0.00	8.1 9.7 11.9 14.1 P- Value		= (p ₃)	0.00
Result of Test: P =0.00 (min/25 mm) Comments:												

P Tests No. 2 at Celbridge Civic Amenity Centre, Celbridge Interchange, Co. Kildare

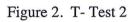


Figure 3. T- Test 3

Site : Proposed Celbridge Civic Amenity Centre, Celbridge Interchange, Co. Kildare. P Test No. 1 - See Site Layout Plan.

3.3(b) Percolation ("P") Test for Shallow Soil / Subsoils and/or Water Table

Step 1: Test Hole Preparation

Percolation Test Hole	1 *	2	3					
Depth from ground surface to top of hole (mm)	0	0	0					
Depth from ground surface to base of hole (mm)	400	400.00	400					
Depth of hole (mm)	400	400	400					
Dimensions of hole [length x breadth (mm)]	300 × 300	300 X 300	X 300					
Step 2: Pre-Soaking Test Holes								
Date and Time pre-soaking started	02/08/2018 09:50	02/08/2018 09:50	02/08/2018 09:50					
Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.								
Step 3: Measuring P ₁₀₀								
Percolation Test Hole No.	1	2	3					
Date of test	03/08/2018	03/08/2018	03/08/2018					
Time filled to 400 mm	10:12	10:12	10:12					
Time water level at 300 mm	11:48	11:36	6 11:28					
Time to drop 100 mm (P ₁₀₀)	96.00	84.00	76.00					
Average D			85.33					

Average P₁₀₀

If $P_{100} > 300$ minutes then P-value >90 – site unsuitable for discharge to ground If $P_{100} \le 210$ minutes then go to Step 4; If $P_{100} > 210$ minutes then go to Step 5;

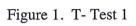
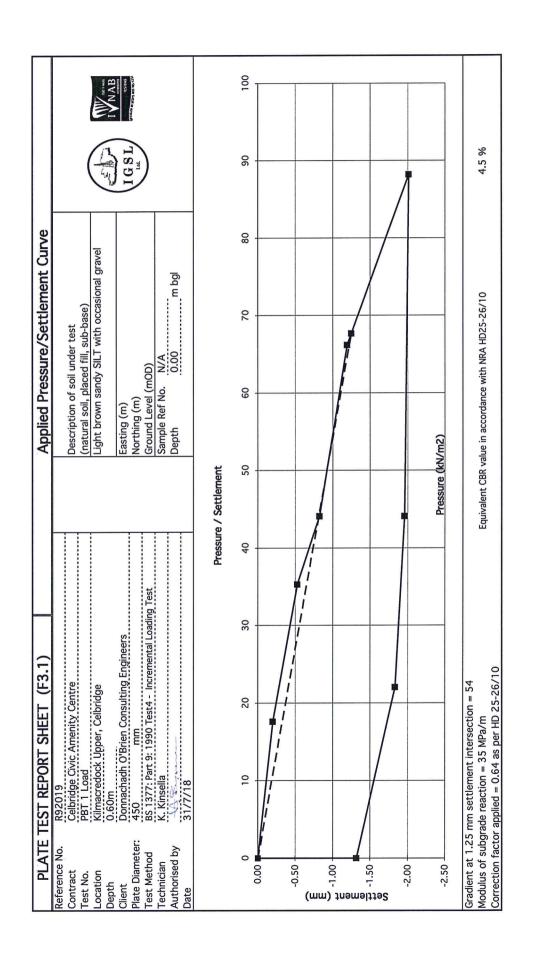
Step 4: Standard Method (where $P_{100} \leq 210$ minutes)

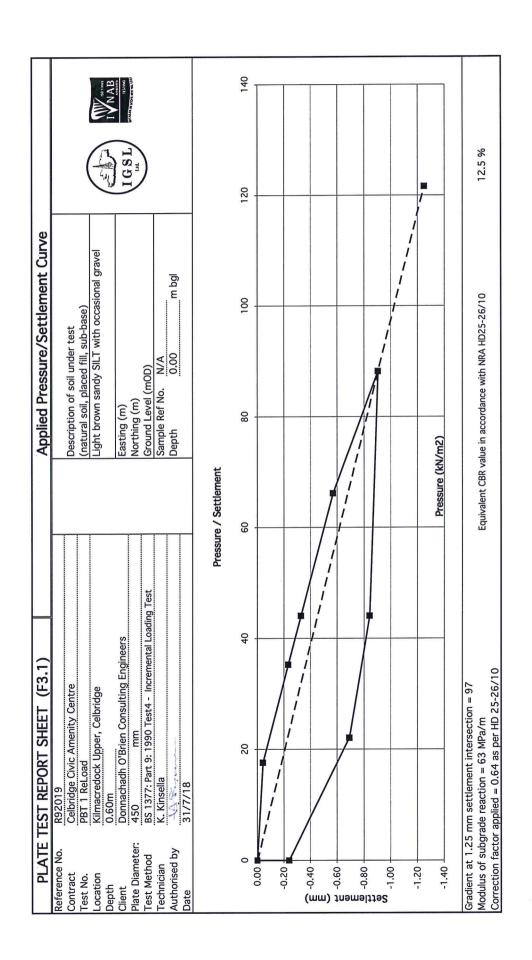
Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆p (min)
1	11:48	13:36	108.00	11:36	13:08	92.00	11:28	12:52	84.00
2	13:40	15:44	124.00	13:12	14:56	104.00	12:56	14:32	96.00
3	15:47	18:03	136.00	14:59	16:55	116.00	14:36	16:28	112.00
Average ∆p Value			122.67			104.00			97. <mark>3</mark> 3
Result of Te	Average ∆r [Hole No.1]		30.67 (p ₁) 27.00 (mir	Average ∆r [Hole No.2] p/25 mm)		26.00 (p ₂)	Average ∆ [Hole No.3		24.33 (p ₃)
Comments:	St. F –		(1111	1/20 mmy		э.			
P Test result =	27								

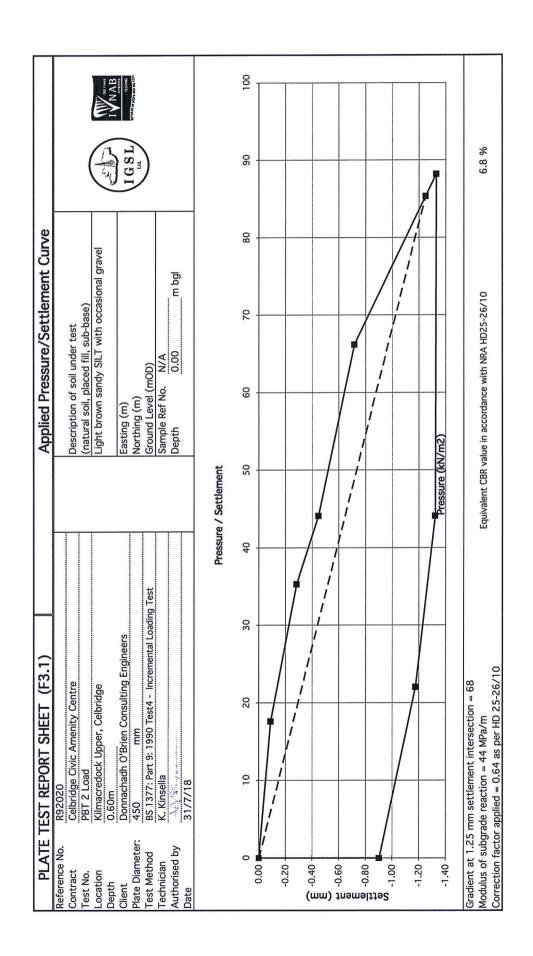
Step 5: Modified Method (where $P_{100} > 210$ minutes)

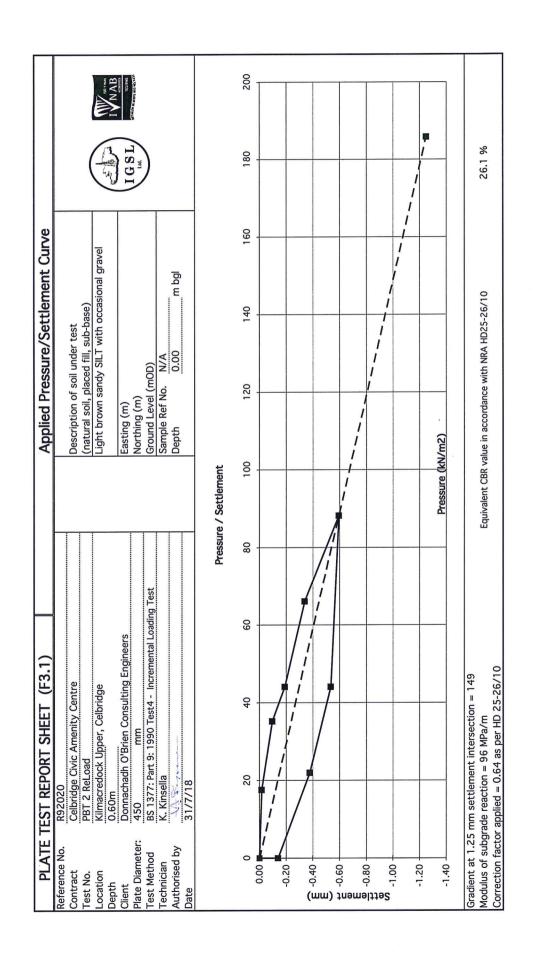
Percolation Test Hole No.		1				2			a	3		
Fall of water in hole (mm)	Time Factor = T _f	Time of fall (mins) = T _m	$K_{fs} = T_f / T_m$	P – Value = 4.45 / K _{fs}	Time Factor = T _f	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{rs}	Time Factor = T _f	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{ts}
300 - 250	8.1				8.1				8.1			
250 - 200	9.7				9.7		~		9.7			
200 - 150	11.9				11.9				11.9			
150 - 100	14.1		1		14.1				14.1			
Average P- Value	P- Value	e Hole 1:	= (p ₁)	0.00	P- Value	e Hole 1=	= (p ₂)	0.00	P- Value	e Hole 1:	= (p ₃)	0.00
Result of Tes	st: P =	-		0.00	(min/25	mm)						
Comments:									ł			

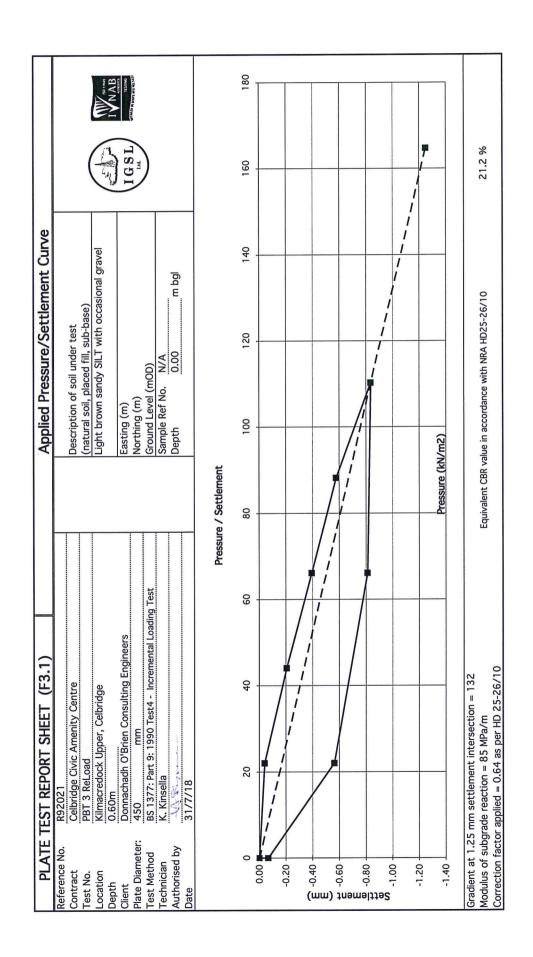
P Tests No. 1 at Celbridge Civic Amenity Centre, Celbridge Interchange, Co. Kildare


Figure 2. T- Test 2


Figure 3. T- Test 3


Appendix VI CBR by Plate Test


Page 2 of 2

Page 1 of 2

Appendix VII Laboratory Data

	IVAB	DEMILED IN SCOPE REG NO. 1331				Ę	Brown slightly sandy, slightly gravelly, CLAY with some cobbles	gravelly CLAY	Brown slightly sandy, gravelty, SILT with some cobbles									NULE: "Clause 3.2 of BS13/7 is a "Withdrawn" standard due to publication of ISO1 7892-1:2014			- age	1 of 1
						Description	Brown slightly sandy, sligh	Brown sandy gravelly CLAY	Brown slightly sandy, grav									ublication of I	on. iol will be retei		חמוב	24/8/18
			nity Centre			Classification (BS5930)	0	сI										dard due to p	f accreditatio			
	Limits	, 4.4 & 5.3	Celbridge Civic Amenity Centre			Liquid Limit Clause	4.4	4.4	4.4									indrawn" stand	Opinions and interpretations are outside the scope of accreditation.	hv hv	'n	- web
	k Plastic	s 3.2*, 4.3	Celbridge	lare.		Preparation	WS	MS	SM									13// IS a "WII	ons are outsid	Anninelis lesteu.		HI Pole
rt	, Liquid 8	90, clause	Vame:	as Co. Kilc		% <425μm	20	84	41									USE 3.2 OI BS	d interpretatio			
Test Report	Content	7:Part 2:19	Contract Name:	n Park, Na		Plasticity Index	15	18	NP							Remarks:			Opinions an	clinear all I		Manager)
Te	Moisture	vith BS137		, Millenniur		Plastic Limit %	23	28	NP							Irbed	bed			to robote	si indai av	H Byrne (Laboratory Manager)
	Determination of Moisture Content, Liquid & Plastic Limits	cordance v	21145	Elm House	22/8/18	Liquid Limit %	38	43	18					1		B - Bulk Distu	U - Undisturbed			rizod to popro	וודפת וח מהחות	H Byrne (L
	Determ	Tested in accordance with BS1377:Part 2:1990, clauses 3.2^* , 4.3 , 4.4 & 5.3	No.	s, Unit 5C,	ted:	Moisture Content %	8.1	16	8.7							Sample Type: B - Bulk Disturbed				Doreone autho	רפואטווא ממווטווגפט וט מאאוטעפ ובאטווא	
		F	Contract No.	Associates	Date Tested:	Sample Type	m	В	в										itive method			
				Donnachadh O'Brien & Associates, Unit 5C, Elm House, Millennium Park, Naas Co. Kildare.	14/08/18	Lab. Ref	A18/7262	A18/7263	A18/7264							ed	ed	<u>0</u>	4.3 Cone Penetrometer definitive method		borator	
			R92773	Donnachad		Depth (m)	1.0	0.5	1.5					8		WS - Wet sieved	AR - As received	NP - NON PIASIIC	4.3 Cone Pene		erials La	
oratory	usiness Park		Report No.	Customer [Samples Received:	Sample No.	AA98912	AA98914	AA98915							Preparation: \			Clause:		IGSL Ltd Materials Laboratory	
IGSL Ltd Materials Laboratory	Unit J5, M7 Business Park Newhall, Naas	Co. Kildare 045 846176				BH/TP	TP01	TP02	TP02							Notes:					1GC	

Tmp: PI.II Rev 02/10

R92773.PI.xls

I TO A BANULDAW SCOPE REG NO. VESTING				n House, Millennium Park, Naas Co. Kildare.					3.35 563 563 563 563 563 563 563 563 563 5													10 100	GRAVEL		e: Page no:	29/08/18 1 of 1	v Manager) H Bvrne (Laboratorv Manager)
e Distribution 90 , clause 9.2 & 9.5 redited)	21145 Report No. R92930 Celbridge Civic Amenity Centre		AA98912 Lab. Sample No. A18/7262	B 1.00 Customer: Donnachadh O'Brien & Associates, Unit 5C, Elm House, Millennium Park, Naas Co. Kildare.	8/2018 Date Testing :	Brown slightly sandy, slightly gravelly, CLAY with some cobbles	kote: Clause 9.2 and Clause 9.5 of 851377.Part 6:1990 have been superveded by ISO17893-4:201.6	5	.06. 20.0 20.0 20.0 20.0 20.0 20.0 2													0.01 0.1 1	SIL 7 Sieve size (mm) SAND		Approved by: Date:	H Eyen	Persons authorised to approve report: J Barrett (Ouality Manager)
TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)	Contract No: 21 Contract: Cel			Depth (m) 1.0	ved	Description: Bro	GRAVEL Remarks			100	06		02 %) [SAND 60			5 (20			0.0001 0.001	CLAY		CI I tal Matariale Laboratory	IOSE ELU MALETIAIS EADUTALUTY	
F	% passing		92	92 87	83	80	78 GR/ 76 GR/	72	71	69	66	63	59	57 S/	55	49	40	35	31	28 SII T	24	20	17	11	<u> </u>	2	
	particle size	75	63 F 0	30 37.5	28	20	14	6.3	ß	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.037	0.027	0.017	0.010	0.007	0.005	0.002			

I I I I I I I I I I I I I I I I I I I				Donnachadh O'Brien & Associates, Unit 5C, Elm House, Milennium Park, Naas Co. Kildare.					3.33 50 50 50 50 50 50 50 50 50 50 50 50 50													10 100	GRA VEL		Date: Page no:	29/08/18 1 of 1	J Barrett (Quality Manager) H Byrne (Laboratory Manager)
TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)	Contract No: 21145 Report No. R92775 Contract: Celbridge Civic Amenity Centre	TP02 A A 00001E I ab Comolo No	Sample Type: B Call Sample Type: B	1.50 Customer:	Date Received 14/08/2018 Date Testing started 15/08/2018	Description: Brown slightly sandy, gravelly, SILT with some cobbles	Remarks Note Clause 9.5 of 651377-8art 2:1990 have been superseded by 15017892-4:2016	S	0.06 0.3 0.42 0.6 0.6 0.6 0.6 0.6			80		09 Oguis			tues 2 6 					0.0001 0.001 0.01 1	CLAY SILT Sieve size (mm) SAND		Approved by:	HE FLU MALETIAIS LADUIALUIY	Persons authorised to approve report: J Barrett (Qua
Del Tested i		COBBLES					GRAVEL							SAND						SII T/CI AY		1				ומסר דר	
	% passing	06	0 8	73	69	65	61 58	54	53	51	48	45	42	41	39	35	29	24	22	20	17	15	13	ω			
	particle size	75 63	50	37.5	28	20	14	6.3	ß	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.038	0.027	0.017	0.010	0.007	0.005	0.002			

Chemtest The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	18-24541-1		
Initial Date of Issue:	23-Aug-2018		
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	21145 Cellbridge		
Quotation No.:		Date Received:	15-Aug-2018
Order No.:		Date Instructed:	15-Aug-2018
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	21-Aug-2018
Date Approved:	23-Aug-2018	,	
Approved By:			
Mana			
Details:	Glynn Harvey, Laboratory Manager		

LIDECI: 21143 Cellbunde	ahniin				
Client: IGSL	Martin Contract	Cher	ntest Jo	Chemtest Job No.:	18-24541
Quotation No.:	U	chemte	Chemtest Sample ID.:	ole ID.:	672188
Order No.:		Clier	Client Sample Ref .:	le Ref.:	98911
		Clie	Client Sample ID .:	ple ID.:	TP1
			Sample	Sample Type:	SOIL
		Î	Top Depth (m):	oth (m):	0.50
		Bot	Bottom Depth (m):	oth (m):	09.0
Determinand	Accred.	SOP	Units	LOD	The State of State
Ammonium	D	1220	l/gm	0.050	0.25
Ammonium	z	1220	mg/kg	0.10	2.5
Boron (Dissolved)	n	1450	l/grl	20	< 20
Boron (Dissolved)	n	1450	mg/kg	0.20	< 0.20

ł

Charles .

1

Client: IGSL	NUSSEL STOR	Cher	Chemtest Job No.:	ob No.:	18-24541	18-24541	18-24541
Quotation No.:		hemte	Chemtest Sample ID.:	ple ID.:	672188	672189	672190
Order No.:		Clier	Client Sample Ref .:	le Ref .:	98911	98912	98914
		Clie	Client Sample ID .:	ple ID.:	TP1	TP1	TP2
			Sampl	Sample Type:	SOIL	SOIL	SOIL
			Top Depth (m):	oth (m):	0.50	1.00	0.50
		Bot	Bottom Depth (m):	oth (m):	0.60		1.00
			Asbest	Asbestos Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD			が非常
ACM Type	D	2192		N/A			
Asbestos Identification	n	2192	%	0.001	No Asbestos Detected		
Moisture	z	2030	%	0.020	8.8	10	15
рН	∍	2010		N/A		[A] 8.1	[A] 8.4
Boron (Hot Water Soluble)	D	2120	mg/kg	0.40	< 0.40		
Sulphate (2:1 Water Soluble) as SO4	∍	2120	g/l	0.010		< 0.010	< 0.010
Sulphur (Elemental)	D	2180	mg/kg	1.0	[A] < 1.0		
Cyanide (Total)	5	2300	mg/kg	0.50	[A] < 0.50		
Sulphide (Easily Liberatable)	z	2325	mg/kg		[A] 5.2		
Sulphate (Acid Soluble)	D	2430	%	0.010	[A] 0.020		
Arsenic	D	2450	mg/kg		23		
Barium	∍	2450	mg/kg	10	68		
Cadmium	∍	2450	mg/kg	-	1.4		
Chromium	∍	2450	mg/kg	1.0	20		
Molybdenum	∍	2450	mg/kg		3.2		
Antimony	z	2450	mg/kg	_	< 2.0		
Copper	5	2450	mg/kg		21		
Mercury	D	2450	mg/kg		0.11		
Nickel	D	2450	mg/kg		57		
Lead	D	2450	mg/kg	0.50	20		
Selenium	D	2450			0.38		
Zinc	D	2450		0.50	94		
Chromium (Trivalent)	z	2490			20		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		
Total Organic Carbon	∍	2625	%	0.20	[A] 0.78		
Mineral Oil	z	2670	mg/kg	10	< 10		
Aliphatic TPH >C5-C6	z	2680	mg/kg		[A] < 1.0		
Aliphatic TPH >C6-C8	Z	2680	mg/kg	1.0	[A] < 1.0		
Aliphatic TPH >C8-C10	D	2680	mg/kg	1.0	[A] < 1.0		
Aliphatic TPH >C10-C12	N	2680	mg/kg	1.0	[A] < 1.0		
Aliphatic TPH >C12-C16	n	2680	mg/kg	1.0	[A] < 1.0		
Aliphatic TPH >C16-C21	n	2680	mg/kg	1.0	[A] < 1.0		
Aliphatic TPH >C21-C35	n	2680	mg/kg		[A] < 1.0		
Aliphatic TPH >C35-C44	z	2680	mg/kg	1.0	[A] < 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg		[A] < 5.0		
Aromatic TPH >C5-C7	z	2680	mg/kg	1.0	[A] < 1.0		

٠

Page 3 of 10

Client: IGSL	State of the state	Cher	Chemtest Job No.:	b No.:	18-24541	18-24541	18-24541
Quotation No.:		Chemte	Chemtest Sample ID.:	ple ID.:	672188	672189	672190
Order No.:		Clier	Client Sample Ref .:	le Ref.:	98911	98912	98914
		Clie	Client Sample ID .:	ple ID.:	TP1	TP1	TP2
			Sampl	Sample Type:	SOIL	SOIL	SOIL
			Top Depth (m):	oth (m):	0.50	1.00	0.50
		Bot	Bottom Depth (m):	oth (m):	0.60		1.00
			Asbest	Asbestos Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD	のないのである		
Aromatic TPH >C8-C10	D	2680	mg/kg	1.0	[A] < 1.0		
Aromatic TPH >C10-C12	D	2680	mg/kg	1.0	[A] < 1.0		
Aromatic TPH >C12-C16	D	2680	mg/kg	1.0	[A] < 1.0		
Aromatic TPH >C16-C21	D	2680	mg/kg	1.0	[A] < 1.0		
Aromatic TPH >C21-C35	Þ	2680	mg/kg		[A] < 1.0		
Aromatic TPH >C35-C44	z	2680	mg/kg		[A] < 1.0		
Total Aromatic Hydrocarbons	z	2680	mg/kg	5.0	[A] < 5.0		
Total Petroleum Hydrocarbons	z	2680	mg/kg	10.0	[A] < 10		
Benzene	∍	2760	µg/kg	1.0	[A] < 1.0		
Toluene	∍	2760	µg/kg	1.0	[A] < 1.0		
Ethylbenzene	∍	2760	µg/kg	1.0	[A] < 1.0		
m & p-Xylene	∍	2760	µg/kg	1.0	[A] < 1.0		
o-Xylene	∍	2760	µg/kg	1.0	[A] < 1.0		
Methyl Tert-Butyl Ether	∍	2760	µg/kg	1.0	[A] < 1.0		
Naphthalene	D	2800	mg/kg	0.10	< 0.10		
Acenaphthylene	z	2800	mg/kg	0.10	< 0.10		
Acenaphthene	D	2800			< 0.10		
Fluorene	∍	2800	mg/kg	_	< 0.10		
Phenanthrene	∍	2800		_	< 0.10		
Anthracene	∍	2800		_	< 0.10		
Fluoranthene	D	2800			< 0.10		
Pyrene	D	2800			< 0.10		
Benzo[a]anthracene		2800	_		< 0.10		
Chrysene	D	2800			< 0.10		
Benzo[b]fluoranthene	5	2800	_		< 0.10		
Benzo[k]fluoranthene	5	2800			< 0.10		
Benzo[a]pyrene	∍	2800			< 0.10		
Indeno(1,2,3-c,d)Pyrene	∍	2800			< 0.10		
Dibenz(a,h)Anthracene	z	2800	mg/kg	0.10	< 0.10		
Benzo[g,h,i]perylene	D	2800	mg/kg		< 0.10		
Coronene	z	2800	mg/kg	0.10	< 0.10		
Total Of 17 PAH's	z	2800	mg/kg		< 2.0		
PCB 28	∍	2815	mg/kg	_	[A] < 0.010		
PCB 52	∍	2815	mg/kg	_	[A] < 0.010		
PCB 90+101	∍	2815	mg/kg	_	[A] < 0.010		
PCB 118	∍	2815	mg/kg		[A] < 0.010		
PCB 153	D	2815	mg/kg		[A] < 0.010		
PCB 138	∍	2815	mg/kg	0.010	[A] < 0.010		

Results - Soil

Project: 21145 Cellbridge		Chemtest Job No.:	est Jo	b No.:	18-24541	18-24541	18-24541
Quotation No.:		Chemtest Sample ID.:	Samp	le ID.:	672188	672189	672190
Order No.:		Client Sample Ref .:	Sample	Bef .:	98911	98912	98914
		Client	t Samp	Client Sample ID .:	TP1	TP1	TP2
		0	Sample Type:	Type:	SOIL	SOIL	SOIL
		To	p Dept	Top Depth (m):	0.50	1.00	0.50
		Bottor	n Dept	Bottom Depth (m):	0.60		1.00
		A	sbesto	Asbestos Lab:	COVENTRY		
Determinand	Accred.	SOP	Units LOD	LOD	のなるのである	新州王和王和王 和武	No. Barbar
PCB 180	D	2815 m	mg/kg 0.010	0.010	[A] < 0.010		
Total PCBs (7 Congeners)	z	2815 mg/kg 0.10	lg/kg	0.10	[A] < 0.10		
Total Phenols	5	2920 ma/ka 0.30	a/ka	0.30	< 0.30		

Results - Single Stage WAC

Project: 21145 Cellbridge							
Chemtest Job No:	18-24541				Landfill V	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	672188					Limits	
Sample Ref:	98911 					Stable, Non-	
	171					reactive	Hazardous
Top Depth(m):	0.50				Inert Waste	hazardous	Waste
Bottom Depth(m):	0.60				Landfill	waste in non-	Landfill
Sampling Date:	200					hazardous	
Determinand	SUP	Accred.	Units			Landfill	
Total Organic Carbon	2625	D	%	[A] 0.78	3	5	6
Loss On Ignition	2610	U	%	2.7	1	1	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	U	mg/kg	< 0.10	1	I	I
TPH Total WAC (Mineral Oil)	2670	n	mg/kg	[A] < 10	500	ł	I
Total (Of 17) PAH's	2800	Z	mg/kg	< 2.0	100	1	
pH	2010	n		8.0	1	>6	l
Acid Neutralisation Capacity	2015	Z	mol/kg	0:050	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	5 10 l/kg
Arsenic	1450	U	< 0.0010	< 0.050	0.5	2	25
Barium	1450	U	0.0063	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	- U	0.0015	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0058	0.058	0.5	10	30
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	D	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	< 0.0010	< 0.50	4	50	200
Chloride	1220	U	3.4	34	800	15000	25000
Fluoride	1220	U	0.52	5.2	10	150	500
Sulphate	1220	U	7.1	71	1000	20000	50000
Total Dissolved Solids	1020	z	95	950	4000	60000	100000
Phenol Index	1920	∍	< 0.030	< 0.30	L		
Dissolved Organic Carbon	1610	D	23	230	500	800	1000

Solid Information	
Dry mass of test portion/kg	060.0
Moisture (%)	8.8

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Deviations

ł

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample ID:	Sample Ref:	Sample ID:	Sampled Date:	Deviation Code(s):	Containers Received:
672188	98911	TP1		A	Amber Glass 250ml
672188	98911	TP1		A	Amber Glass 60ml
672189	98912	TP1		А	Amber Glass 250ml
672190	98914	TP2		А	Amber Glass 250ml

Page 7 of 10

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection

1

Test Methods

ŕ,

1

į

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Ŷ

-

i

,

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry

weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

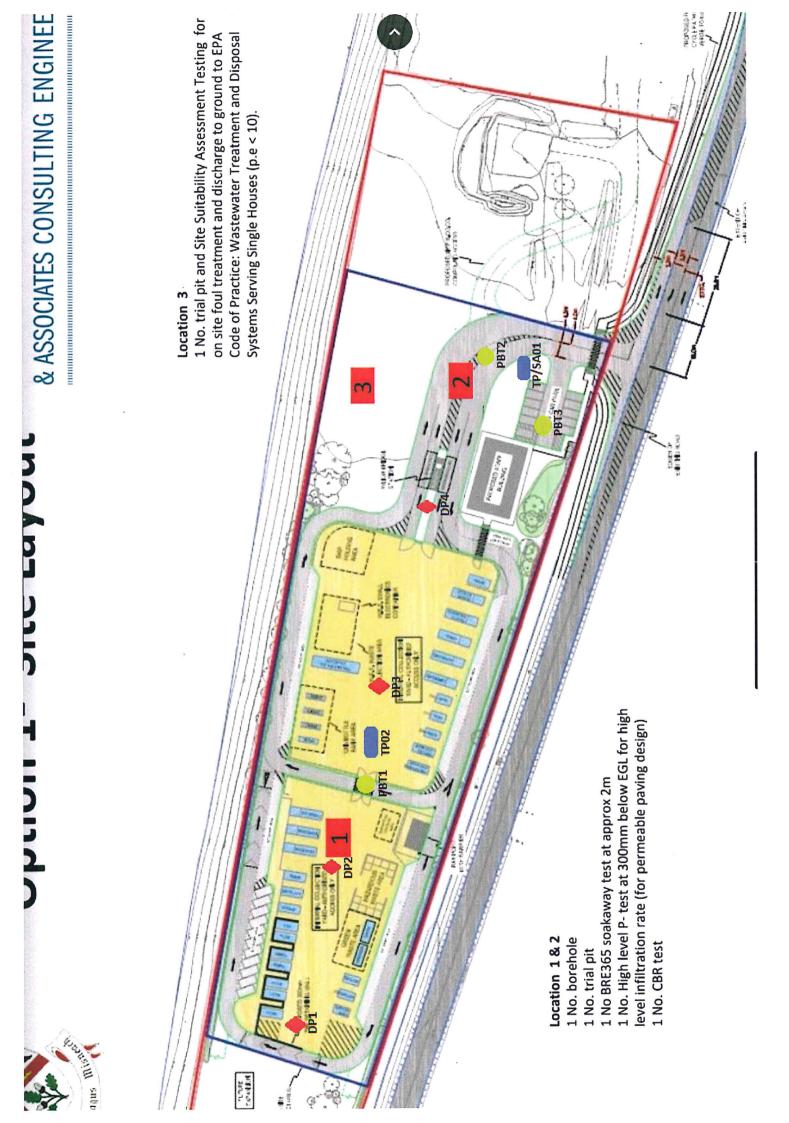
Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u> Appendix VIII Site Plan


.

DONNACHADH O'BRIEN

& ASSOCIATES CONSULTING ENGINEERS

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix C Surface Water Network Calculations

Donnac	hadh	0'Bri	en & Z	Associa	tes						Pag	ge 1
Jnit W	19 E 8	F La	dytowi	ı BP	Ci	vic Ameni	ty Cer	ntre				
Jewhal	1 1	Iaas	1			lmacredoc					4	
Co Kil						Kildare						\sim
Date 1		2018				signed by		านไค			— M	
			TV OF	NTRE 12		ecked by i		-			D	rainac
KP Sol			II CEI	NIKE IZ		twork 201		st tel	L			-
AP SOI	<u>ut101</u>	IS			Ne	LWOIK ZUI	0.1					
		STO	RM SEV	IER DES	IGN by	the Modif	ied Ra	atior	nal N	letho	d	
			De	sign Cr	iteria	for Surfa	ace Ne	etwor	<u>k 1</u>			
			Pi	pe Sizes.	STANDA	RD Manhole	Sizes	STAND	ARD			
			F	SR Rainf	all Mode	el - Scotlar	nd and	Irela	nd			
		Ret	urn Pe	riod (ye		5					hange (
					(mm) 15. io R 0.					-	-	m) 0.20 m) 1.50
		Maximu	um Rain	fall (mm						-	-	
Maximu	ım Tim			ation (m			-	-	-		nly (m/	
				age (l/s			in Slop	e for	Opti	misat	ion (1:	X) 50
		Volume	etric R	unoff Co	eff. 0.	.750						
				_								
				De	slanea v	NITH LEVEL	Inverts					
				De	signed v	with Level 1	Inverts	•				
			Netwo		_	ole for Su			vork	1		
PN			L Slop	ork Des:	ign Tab T.E.	ole for Su Base	rface k	Netv HYD	DIA		.on Typ	
PN	Lengt (m)	h Fal: (m)	L Slop	ork Des: e I.Area	ign Tab T.E.	ole for Su	rface k	Netv HYD	DIA		on Typ	e Auto Desig
	(m)	(m)	L Slop	ork Des: e I.Area) (ha)	ign Tab T.E. (mins)	ble for Su Base Flow (1/s)	rface k	Netw HYD SECT	DIA (mm)	Secti	.on Typ	Desig
1.000	(m) 39.09	(m) 94 0.19	l Slop (1:X	ork Des: e I.Area) (ha) 5 0.060	ign Tak T.E. (mins) 5.00	ble for Su Base Flow (1/s) 0.0	rface k (mm)	Netw HYD SECT	DIA (mm) 300	Secti Pipe/		Desig
1.000 1.001	(m) 39.09 46.10	(m) 94 0.19 98 0.23	1 Slop (1:X 5 200. 1 199.	ork Des: e I.Area) (ha) 5 0.060 6 0.019	ign Tak T.E. (mins) 5.00 0.00	Dle for Su Base Flow (1/s) 0.0 0.0	rface k (mm) 0.600 0.600	Netv HYD SECT o o	DIA (mm) 300 300	Secti Pipe/ Pipe/	Condui Condui	Desig t 🔒 t 🎒
1.000 1.001 2.000	(m) 39.09 46.10 40.55	(m) 94 0.19 98 0.23 58 0.20	slop (1:x 5 200. 1 199. 3 199.	ork Des: e I.Area) (ha) 5 0.060 6 0.019 8 0.038	ign Tak T.E. (mins) 5.00 0.00 5.00	Dle for Su Base Flow (1/s) 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600	Netv HYD SECT 0 0	DIA (mm) 300 300 300	Secti Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	Desig t 🔒 t
1.000 1.001 2.000 2.001	(m) 39.09 46.10 40.55 8.71	(m) 94 0.19 98 0.23 58 0.20 5 0.04	1 Slop (1:X 5 200. 1 199.	ork Des: e I.Area) (ha) 5 0.060 6 0.019 8 0.038 1 0.045	ign Tak T.E. (mins) 5.00 0.00 5.00	Dle for Su Base Flow (1/s) 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600	Netv HYD SECT 0 0	DIA (mm) 300 300 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	Desig t b t b t b t b
1.000 1.001 2.000 2.001	(m) 39.09 46.10 40.55 8.71	(m) 94 0.19 98 0.23 58 0.20 5 0.04	slop (1:x 5 200. 1 199. 3 199. 4 198.	ork Des: e I.Area) (ha) 5 0.060 6 0.019 8 0.038 1 0.045	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00	Dle for Su Base Flow (1/s) 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0	DIA (mm) 300 300 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	Desig t å t å t å
1.000 1.001 2.000 2.001 2.002 1.002	(m) 39.09 46.10 40.55 8.71 28.98 22.95	(m) 94 0.19 98 0.23 98 0.20 98 0.20 96 0.14 96 0.11	<pre> slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 5 199.</pre>	ork Des: e I.Area) (ha) 5 0.060 6 0.019 8 0.038 1 0.045 9 0.029 6 0.044	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00	Dle for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0 0	DIA (mm) 300 300 300 375 375	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	(Condui (Condui (Condui (Condui) (Condui) (Condui)	Desig
1.000 1.001 2.000 2.001 2.002 1.002	(m) 39.09 46.10 40.55 8.71 28.98 22.95	(m) 94 0.19 98 0.23 98 0.20 98 0.20 96 0.14 96 0.11	<pre> slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 5 199.</pre>	ork Des: e I.Area) (ha) 5 0.060 6 0.019 8 0.038 1 0.045 9 0.029	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00	Dle for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0 0	DIA (mm) 300 300 300 375 375	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui Condui	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 98 0.11 95 0.02	<pre> slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 5 199.</pre>	ork Des: e I.Area) (ha) 5 0.060 6 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00	Dle for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0 0	DIA (mm) 300 300 300 375 375 375	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	(Condui (Condui (Condui (Condui) (Condui) (Condui)	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 98 0.11 95 0.02 9 0.17	Slop (1:X) 5 200. 1 199. 3 199. 4 198. 5 199. 5 199. 0 203.	ork Des: e I.Area (ha) 5 0.060 6 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 5.00	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 375 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui Condui Condui Condui	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 98 0.11 95 0.02 9 0.17	<pre> slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 5 199. 0 203. 5 199.</pre>	ork Des: e I.Area (ha) 5 0.060 6 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 5.00 5.0	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 375 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui Condui Condui Condui	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95 16.43	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.11 97 0.02 99 0.17 93 0.08	<pre> slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 5 199. 0 203. 5 199.</pre>	prk Des: e I.Area) (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 <u>N</u>	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 5.00 5.0	Dele for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui Condui Condui Condui Condui	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000	(m) 39.09 46.10 40.55 8.71 28.98 4.07 34.95 16.43 N E	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.14 96 0.11 9 0.17 9 0.17 9 0.17 9 0.08 8 0.08 8 0.08 8 0.008 8 0.008 9 0.08 9 0.08 9 0.08 9 0.08 9 0.08 9 0.08 9 0.08 9 0.008 9 0	<pre>1 slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 5 199. 0 203. 5 199. 2 200.</pre>	prk Des: e I.Area) (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 <u>N</u>	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 5.00 5.0	Dele for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul	Netv HYD SECT 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel	Condui Condui Condui Condui Condui Condui	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95 16.43 N F (m	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.14 97 0.17 93 0.08 84 84 85 0.08 96 0.17 97 0.17	<pre>1 slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 0 203. 5 199. 2 200. 7.C. (mins)</pre>	prk Des: a I.Area b (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 Δ Δ VS/IL Σ (m)	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 <u>0.600</u> <u>0.600</u> <u>0.600</u> <u>0.600</u> <u>0.600</u> <u>0.600</u>	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	(Condui (Condui (Condui (Condui (Condui (Condui) (Condui) (Condui) (Condui) (Condui) (Condui)	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 PJ	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95 16.43 N I (m	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.11 95 0.02 99 0.17 93 0.08 8ain m/hr) 50.00	<pre>1 slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 0 203. 5 199. 2 200. 7.C. (mins) 5.59</pre>	prk Des: a I.Area b (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 W (m) 65.046	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 5.00 5.00 5.00 5.00 5.00 5.00 0.000 0.00	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul (1/s) 0.0	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300 300 Flow s) 1.6	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.11	(Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui) (Condui (Condui) (Condui (Condui) (Condui (Condui) (Co	Desig t t t t t t t f t f t f t f f f f f f f f f f f f f
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95 16.43 N I (m	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.14 97 0.17 93 0.08 84 84 85 0.08 96 0.17 97 0.17	<pre>1 slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 0 203. 5 199. 2 200. 7.C. (mins) 5.59</pre>	prk Des: a I.Area b (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 Δ Δ VS/IL Σ (m)	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul (1/s) 0.0	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	(Condui (Condui (Condui (Condui (Condui (Condui) (Condui) (Condui) (Condui) (Condui) (Condui)	Desig
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 PJ	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95 16.43 N I (m) 000	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.11 95 0.02 99 0.17 93 0.08 8ain m/hr) 50.00	<pre>1 slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 0 203. 5 199. 2 200. 7.C. (mins) 5.59 6.28</pre>	prk Des: a I.Area b (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 W (m) 65.046	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 5.00 5.00 5.00 5.00 5.00 5.00 0.000 0.00	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul (1/s) 0.0	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300 300 Flow s) 1.6	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.11	(Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui (Condui) (Condui (Condui) (Condui (Condui) (Condui (Condui) (Co	Desig t t t t t t t f t f t f t f f f f f f f f f f f f f
1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 PI 1.0 1.0	(m) 39.09 46.10 40.55 8.71 28.98 22.95 4.07 34.95 16.43 N I (m) 000 001	(m) 94 0.19 98 0.23 98 0.20 5 0.04 96 0.14 96 0.14 97 0.17 93 0.08 84 in m/hr) 50.00 50.00	<pre>1 slop (1:x 5 200. 1 199. 3 199. 4 198. 5 199. 0 203. 5 199. 2 200. 7.C. (mins) 5.59 6.28 5.61</pre>	prk Des: a I.Area b (ha) 5 0.060 5 0.019 8 0.038 1 0.045 9 0.029 6 0.044 7 0.034 8 0.148 4 0.034 W W (m) 65.046 64.851	ign Tak T.E. (mins) 5.00 0.00 5.00 0.00 0.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0.000 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.000000 0.00000 0.0000000 0.00000000	Die for Su Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rface k (mm) 0.600 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	Netv HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 300 300 300 375 375 375 300 300 300 Flow (s) 1.6 2.1	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ 1.11 1.11	Condui Condui Condui Condui Condui Condui Condui Condui Condui Condui Condui 7 Condui Condui Condui Condui Condui Condui Condui Condui Condui Condo	Desig t t t t t t t t t t t t t

2.000	50.00	J.01	05.012	0.030	0.0	0.0	1.0	T • T T	/0.4	0.2
2.001	50.00	5.74	64.809	0.083	0.0	0.0	2.2	1.11	78.7	13.5
2.002	50.00	6.12	64.765	0.112	0.0	0.0	3.0	1.28	141.1	18.2
1.002	50.00	6.58	64.620	0.235	0.0	0.0	6.4	1.28	141.2	38.2
1.003	50.00	6.63	64.505	0.269	0.0	0.0	7.3	1.27	139.8	43.7
3.000	50.00	5.53	65.041	0.148	0.0	0.0	4.0	1.11	78.4	24.0
4.000	50.00	5.25	64.948	0.034	0.0	0.0	0.9	1.11	78.2	5.5
			©198	82-2016 XP	Solut	ions				

Oonnachadh O'Brien & Associates		Page 2
Jnit W9 E&F Ladytown BP	Civic Amenity Centre	
Jewhall Naas	Kilmacredock	4
Co Kildare	Co Kildare	Micco
Date 11/12/2018	Designed by P. Doyle	
File CIVIC AMENITY CENTRE 12	Checked by D. O'Brien	Drainage
XP Solutions	Network 2016.1	1
Network Design	Table for Surface Network 1	
		There Auto
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi	E. Base k HYD DIA Section ns) Flow (l/s) (mm) SECT (mm)	Type Auto Design
3.001 53.649 0.268 200.2 0.047 0	.00 0.0 0.600 o 375 Pipe/Con	nduit 🧂
5.000 49.458 0.247 200.2 0.223 5	.00 0.0 0.600 o 375 Pipe/Con	nduit 🍵
3.002 22.654 0.113 200.5 0.047 0	.00 0.0 0.600 o 375 Pipe/Con	nduit 🇂
1.004 9.065 0.145 62.5 0.000 0	.00 0.0 0.600 o 375 Pipe/Con	nduit 🍵
Netwo	ork Results Table	
PN Rain T.C. US/IL Σ I.A		ap Flow
(mm/hr) (mins) (m) (ha	a) Flow (l/s) (l/s) (l/s) (m/s) (l	/s) (1/s)
3.001 50.00 6.23 <mark>64.866</mark> 0.	.229 0.0 0.0 6.2 1.28 14	1.0 37.2
5.000 50.00 5.65 <mark>64.845</mark> 0.	.223 0.0 0.0 6.0 1.28 14	1.0 36.2
3.002 50.00 6.52 <mark>64.598</mark> 0.	.499 0.0 0.0 13.5 1.28 14	0.9 81.1
1.004 50.00 6.70 <mark>64.485</mark> 0.	.768 0.0 0.0 20.8 2.29 25	3.5 124.8
Simulation Cri	teria for Surface Network 1	
Volumetric Runoff Coeff (Areal Reduction Factor 1	1.000 MADD Factor * 10m ³ /ha Storag	ge 2.000
Hot Start (mins) Hot Start Level (mm)	0 Inlet Coeffiecier 0 Flow per Person per Day (l/per/day	
Manhole Headloss Coeff (Global) (Foul Sewage per hectare (l/s) (0.500 Run Time (mins	3) 60
	raphs 0 Number of Storage Structures 1 crols 1 Number of Time/Area Diagrams 0	
	crols 0 Number of Real Time Controls 0	
Synthet	cic Rainfall Details	
Rainfall Model Return Period (years)	FSR Profile Type Su 5 Cv (Summer) 0	mmer .750
		.840 30
©1982-	-2016 XP Solutions	

ake Optimum® Ma I Des inimum Outlet Pipe Suggested Manhole Contro	Network 2016.1 htrols for Surface htrols for Surface unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) Diameter (mm) Diameter (mm)	. Doyle O'Brien L 2 Network 1 1.004, Volume (m ³ -0077-2900-1280-2900 1.280 2.9 Calculated Dise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	- Micro Drainag
.8 INITY CENTRE 12 Online Co ake Optimum® Ma I Des inimum Outlet Pipe Suggested Manhole Contro Design Poin	Co Kildare Designed by P. Checked by D. Network 2016.1 Atrols for Surface anhole: S7, DS/PN: Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) Diameter (mm) Diameter (mm) Diameter (mm)	O'Brien Network 1 1.004, Volume (m ³ -0077-2900-1280-2900 1.280 2.9 Calculated dise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	
<u>Online Co</u> <u>Online Co</u> <u>ake Optimum® Ma</u> <u>I</u> Des inimum Outlet Pipe Suggested Manhole Contro Design Poin	Designed by P. Designed by P. Checked by D. Network 2016.1 Atrols for Surface Antrols for Surface Antrols for Surface Antrols for Surface Diameter (m) Diameter (mm) Diameter (mm)	O'Brien Network 1 1.004, Volume (m ³ -0077-2900-1280-2900 1.280 2.9 Calculated dise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	
<u>Online Co</u> <u>Online Co</u> <u>ake Optimum® Ma</u> <u>I</u> Des inimum Outlet Pipe Suggested Manhole Contro Design Poin	<pre> Checked by D. Network 2016.1 htrols for Surface anhole: S7, DS/PN: Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm)</pre>	O'Brien Network 1 1.004, Volume (m ³ -0077-2900-1280-2900 1.280 2.9 Calculated ves 77 64.485 100 1200 m) Flow (1/s)	
<u>Online Co</u> ake Optimum® Ma I Des inimum Outlet Pipe Suggested Manhole Contro Design Poin	Network 2016.1 Atrols for Surface Anhole: S7, DS/PN: Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) Head (m 1.28	<pre>1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	
ake Optimum® Ma I Des inimum Outlet Pipe Suggested Manhole Contro Design Poin	ntrols for Surface nhole: S7, DS/PN: Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) Level (m) Diameter (mm) Diameter (mm) Diameter (mm) Level (m) Diameter (mm) Diameter (mm) Diameter (mm)	e Network 1 1.004, Volume (m ³ -0077-2900-1280-2900 1.280 2.9 Calculated dise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	3): <u>5.3</u>
ake Optimum® Ma I Des inimum Outlet Pipe Suggested Manhole Contro Design Poin	unhole: S7, DS/PN: Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) 1 Points Head (m : (Calculated) 1.28	1.004, Volume (m ³ -0077-2900-1280-2900 1.280 2.9 Calculated dise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	3): <u>5.3</u>
I Des Ir inimum Outlet Pipe Suggested Manhole Contro Design Poin	Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) l Points Head (m : (Calculated) 1.28	:-0077-2900-1280-2900 1.280 2.9 Calculated aise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	3): 5.3
I Des Ir inimum Outlet Pipe Suggested Manhole Contro Design Poin	Unit Reference MD-SHE esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) l Points Head (m : (Calculated) 1.28	:-0077-2900-1280-2900 1.280 2.9 Calculated aise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	
Des Ir inimum Outlet Pipe Suggested Manhole Contro Design Poin	esign Head (m) ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) l Points Head (m : (Calculated) 1.28	1.280 2.9 Calculated mise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	
Des Ir inimum Outlet Pipe Suggested Manhole Contro Design Poin	ign Flow (1/s) Flush-Flo™ Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) l Points Head (m : (Calculated) 1.28	Calculated hise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	
inimum Outlet Pipe Suggested Manhole Contro Design Poin	Objective Minim Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) l Points Head (m : (Calculated) 1.28	nise upstream storage Surface Yes 77 64.485 100 1200 m) Flow (1/s)	
inimum Outlet Pipe Suggested Manhole Contro Design Poin	Application Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) l Points Head (n : (Calculated) 1.28	Surface Yes 77 64.485 100 1200 n) Flow (1/s)	
inimum Outlet Pipe Suggested Manhole Contro Design Poin	Sump Available Diameter (mm) vert Level (m) Diameter (mm) Diameter (mm) l Points Head (m : (Calculated) 1.28	Yes 77 64.485 100 1200 n) Flow (1/s)	
inimum Outlet Pipe Suggested Manhole Contro Design Poin	vert Level (m) Diameter (mm) Diameter (mm) l Points Head (n : (Calculated) 1.28	64.485 100 1200 n) Flow (1/s)	
inimum Outlet Pipe Suggested Manhole Contro Design Poin	Diameter (mm) Diameter (mm) l Points Head (m : (Calculated) 1.28	100 1200 n) Flow (l/s)	
Suggested Manhole Contro Design Poin	Diameter (mm) l Points Head (m : (Calculated) 1.28	1200 n) Flow (1/s)	
Design Poin	(Calculated) 1.28		
-	· ,		
Mean Flow o	Flush-Flo™ 0.33	80 2.9	
Mean Flow o			
Mean Flow O	Kick-Flo® 0.68	85 2.2 - 2.4	
timum® be utilised	d. Should another ty then these storage r	outing calculations w	will be
2.7 1.800	3.4 4.500	5.2 8.500	
2.6 2.000	3.6 5.000		
			0 7.4
2.01 2.000	1.0 0.500	0.2	
	2.2 2.6 2.7 2.7 1.600 2.7 1.800	2.2 1.200 2.8 3.000 2.6 1.400 3.0 3.500 2.7 1.600 3.2 4.000 2.7 1.800 3.4 4.500 2.6 2.000 3.6 5.000 2.5 2.200 3.7 5.500 2.3 2.400 3.9 6.000	2.6 1.400 3.0 3.500 4.6 7.500 2.7 1.600 3.2 4.000 4.9 8.000 2.7 1.800 3.4 4.500 5.2 8.500 2.6 2.000 3.6 5.000 5.5 9.000 2.5 2.200 3.7 5.500 5.7 9.500 2.3 2.400 3.9 6.000 6.0 6.00

Donnachadh O'Brien & AssociatesPage 4Unit W9 E&F Ladytown BPCivic Amenity CentreNewhall NaasKilmacredockCo KildareCo KildareDate 11/12/2018Designed by P. DoyleFile CIVIC AMENITY CENTRE 12Checked by D. O'BrienXP SolutionsNetwork 2016.1Storage Structures for Surface Network 1Tank or Pond Manhole: S3, DS/PN: 2.002Invert Level (m) 64.765	سر
Newhall Naas Kilmacredock Co Kildare Co Kildare Date 11/12/2018 Designed by P. Doyle File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien XP Solutions Network 2016.1 Storage Structures for Surface Network 1 Tank or Pond Manhole: S3, DS/PN: 2.002	سر
Co Kildare Co Kildare Micro Date 11/12/2018 Date 11/12/2018 Designed by P. Doyle Designed by D. O'Brien File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien Designed by P. Doyle XP Solutions Network 2016.1 Storage Structures for Surface Network 1	سر
Date 11/12/2018 Designed by P. Doyle Micro Drainal File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien Drainal XP Solutions Network 2016.1 Storage Structures for Surface Network 1 Tank or Pond Manhole: S3, DS/PN: 2.002	
Date 11/12/2018 Designed by P. Doyle File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien XP Solutions Network 2016.1 Storage Structures for Surface Network 1 Tank or Pond Manhole: S3, DS/PN: 2.002	
XP Solutions Network 2016.1 Storage Structures for Surface Network 1 Tank or Pond Manhole: S3, DS/PN: 2.002	
Storage Structures for Surface Network 1 Tank or Pond Manhole: S3, DS/PN: 2.002	IYE
Tank or Pond Manhole: S3, DS/PN: 2.002	
Tank or Pond Manhole: S3, DS/PN: 2.002	
Invert Level (m) 64.765	
Depth (m) Area (m ²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 525.0 1.000 525.0 1.001 0.0	
©1982-2016 XP Solutions	

		-		Assoc						Page	5
Unit V	W9 E	&F I	Ladyto	own BP	(Civic A	menity	Centre			
Newha	11 :	Naas			1	Kilmacr	edock			4	<u> </u>
Co Ki	ldare				(Co Kild	are			Mic	
Date 3	11/12	/2018	8]	Designe	d by P	. Doyle		Dcai	טיר
File (CIVIC	AMEI	NITY C	CENTRE	12 0	Checked	by D.	0'Brien		Didi	naye
XP So	lutio	ns			1	Network	2016.	1		I	
_									6	c	
Summa	iry of	Cri	tical	Result	s by Ma	axımum	Level ((Rank 1)	for Sur	face Net	work .
					Sim	lation (Criteria				
		Area			actor 1.	000 Ad	ditional	L Flow - %		Flow 20.0	
		TT		Start (1			MADD I			orage 2.0 cient 0.8	
M	anhole				(mm) obal) 0.		per Pei			(day) 0.0	
					(1/s) 0.		P01 101	bon For p		, aa, , , , , , ,	
		Muu	mber of	F Input	Hydrogray	obe 0 Nu	mber of	Storage S	tructures	1	
		1	Number	of Onli	ne Contro	ols 1 Nu	mber of	Time/Area Real Time	Diagrams	0	
						ic Rainf					
			Rainf	all Mode	el		FSR	Ratio	R 0.277		
				-		and and I		Cv (Summe:			
			М	5-60 (mm	1)		15.900	Cv (Winte:	r) 0.840		
		Margi	n for B	Flood Ri	sk Warni	ng (mm)				0.0	
				An	-	-	2.5 Seco	ond Increm	ent (Exte		
						Status Status				OFF ON	
					Inertia					ON	
				Profi	le(s)			Sum	mer and W	inter	
						, 30, 60	, 120, 2	240, 360,			
		Retur		od(s) (y te Chang					1, 30 0,	, 100 0, 0	
					- (-)				-,	-, -	
	US/MH			Return	Climate	First	(X)	First (Y)	First (Z) Overflow	Water Leve
PN	US/MH Name	St	orm		Climate Change	First Surch		First (Y) Flood	First (Z Overflow) Overflow Act.	
PN			: orm Winter	Period		Surch					(m)
PN 1.000 1.001	Name S14 S15	15 15	Winter Winter	Period 100 100	Change +0왕 +0왕	Surch 30/15 30/15	arge Summer Summer				(m) 65.57 65.54
PN 1.000 1.001 2.000	Name \$14 \$15 \$1	15 15 1440	Winter Winter Winter	Period 100 100 100	Change +0% +0% +0%	Surch 30/15 30/15 100/240	a rge Summer Summer Winter				(m) 65.57 65.54 65.49
PN 1.000 1.001 2.000 2.001	Name \$14 \$15 \$1 \$2	15 15 1440 1440	Winter Winter Winter Winter	Period 100 100 100 100	Change +0% +0% +0%	Surch 30/15 30/15 100/240 30/120	Summer Summer Winter Winter				<pre>Leve (m) 65.57 65.54 65.49 65.49</pre>
PN 1.000 1.001 2.000 2.001 2.002	Name \$14 \$15 \$1 \$2 \$3	15 15 1440 1440 1440	Winter Winter Winter Winter Winter	Period 100 100 100 100 100	Change +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/120 30/240	Summer Summer Winter Winter Winter				<pre>Leve (m) 65.57 65.54 65.49 65.49 65.49</pre>
PN 1.000 1.001 2.000 2.001 2.002 1.002	Name \$14 \$15 \$1 \$2 \$3	15 15 1440 1440 1440 1440	Winter Winter Winter Winter	Period 100 100 100 100 100 100	Change +0% +0% +0%	Surch 30/15 30/15 100/240 30/120 30/240 1/15	Summer Summer Winter Winter				(m) 65.57
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003	Name \$14 \$15 \$1 \$2 \$3 \$5	15 15 1440 1440 1440 1440 15	Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/120 30/240 1/15 1/15	Summer Summer Winter Winter Winter Winter				Leve (m) 65.57 65.54 65.49 65.49 65.49 65.53 65.70 65.70 66.06
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9	15 15 1440 1440 1440 1440 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 100 100	Change +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/120 30/240 1/15 1/15 30/15 30/15	Summer Summer Winter Winter Winter Summer Summer Summer				 Level (m) 65.57 65.54 65.49 65.49 65.49 65.53 65.70 66.06 65.98
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 3.001	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10	15 15 1440 1440 1440 1440 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/220 30/240 1/15 1/15 30/15 30/15 30/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer				 Level (m) 65.57 65.54 65.49 65.49 65.49 65.53 65.70 66.06 65.98 65.97
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 3.001 5.000	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10 \$13	15 15 1440 1440 1440 1440 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/220 30/240 1/15 1/15 30/15 30/15 30/15 30/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer Summer				 Lever (m) 65.57 65.54 65.49 65.49 65.49 65.53 65.70 66.06 65.98 65.97 65.98
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 3.001 5.000 3.002	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10	15 15 1440 1440 1440 15 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/220 30/240 1/15 30/15 30/15 30/15 30/15 30/15 1/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer				 Level (m) 65.57 65.54 65.49 65.49 65.49 65.49 65.53 65.70 66.06 65.98 65.97 65.98 65.91
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 3.001 5.000 3.002	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10 \$13 \$11	15 15 1440 1440 1440 15 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/220 30/240 1/15 30/15 30/15 30/15 30/15 30/15 1/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer Summer	Flood			 Lever (m) 65.57 65.54 65.49 65.49 65.49 65.49 65.53 65.70 66.06 65.98 65.97 65.98 65.91
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 3.001 5.000 3.002	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10 \$13 \$11	15 15 1440 1440 1440 15 15 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 100 100 1	Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/240 1/15 1/15 30/15 30/15 30/15 30/15 1/15 1/15 1/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer Summer	Flood		Act.	 Lever (m) 65.57 65.54 65.49 65.49 65.49 65.49 65.53 65.70 66.06 65.98 65.97 65.98 65.91
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10 \$13 \$11	15 15 1440 1440 1440 15 15 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch 30/15 30/15 100/240 30/220 30/240 1/15 30/15 30/15 30/15 30/15 30/15 1/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer Summer	Flood			 Level (m) 65.57 65.54 65.49 65.49 65.49 65.53 65.70 66.06 65.98
PN 1.000 1.001 2.000 2.001 2.002 1.002 1.003 3.000 4.000 3.001 5.000 3.002	Name \$14 \$15 \$1 \$2 \$3 \$5 \$6 \$12 \$9 \$10 \$13 \$11 \$7	15 15 1440 1440 1440 15 15 15 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Period 100 100 100 100 100 100 100 10	Change +0% +0% +0% +0% +0% +0% +0% +0% +0% Flooded Volume (m ³)	Surch 30/15 30/15 100/240 30/240 1/15 1/15 30/15 30/15 30/15 30/15 1/15 1/15 1/15 1/15 1/15	Summer Summer Winter Winter Winter Summer Summer Summer Summer Summer	Flood Pipe V Flow (l/s)	Overflow	Act.	 Level (m) 65.57 65.54 65.49 65.49 65.49 65.49 65.53 65.70 66.06 65.98 65.97 65.98 65.91

Donnachadh O'Brien & Associates		Page 6
Unit W9 E&F Ladytown BP	Civic Amenity Centre	
Newhall Naas	Kilmacredock	4
Co Kildare	Co Kildare	Micco
Date 11/12/2018	Designed by P. Doyle	Drainage
File CIVIC AMENITY CENTRE 12	Checked by D. O'Brien	Diamaye
XP Solutions	Network 2016.1	*

Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded
1.001	S15	0.392	0.000	0.33		24.2	SURCHARGED	
2.000	S1	0.185	0.000	0.01		0.9	SURCHARGED	
2.001	S2	0.388	0.000	0.03		1.9	SURCHARGED	
2.002	S3	0.357	0.000	0.08		9.8	SURCHARGED	
1.002	S5	0.541	0.000	0.05		6.5	SURCHARGED	
1.003	S6	0.822	0.000	0.03		2.4	SURCHARGED	
3.000	S12	0.724	0.000	0.63		45.6	SURCHARGED	
4.000	S9	0.733	0.000	0.16		10.4	SURCHARGED	
3.001	S10	0.734	0.000	0.48		63.5	SURCHARGED	
5.000	S13	0.766	0.000	0.52		67.6	SURCHARGED	
3.002	S11	0.945	0.000	1.14		137.6	SURCHARGED	
1.004	S7	0.939	0.000	0.02		2.9	SURCHARGED	

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix D Surface Water Longitudinal Sections

oonnachadh O'Brien Mnit W9 E&F Ladyt	own BP			rivia	Amen	itv	Centre			Page 1
fiit wy E&F Ladyt fewhall Naas	UWII DP			CIVIC Kilmad		-	CEIICLE			4
Co Kildare				Co Ki						Micro
Date 11/12/2018							. Doyle			Drainago
ile CIVIC AMENITY	CENTRE 1	2					0'Brie	n		bidinagi
XP Solutions]	Netwo	rk 20	16.	1			
MH Name	S8			SS	5		S15	5	S14	1
Hor Scale 1500										
			3.00	2	2.002					
Ver Scale 200										
Datum (m)61.000										
PN				1.002		1.	001	1.	.000	
Dia (mm)				375		3	00	3	300	
Slope (1:X)				199.6		19	9.6	20	0.5	
	195	325		203			19		158	
Cover Level (m)	66.1	•		66.2			.11	1	66.1	
	66	99		99			99		99	
		5 2	5	0	0		Ę		9	
Invert Level (m)		.485	.505	.62	64.620			64.851	.046	
		64	64	64	64		64	64	65	
Length (m)			2	2.958		46.	108	39	.094	
MH Name			S	5	S3			S1		
Hor Scale 1500				1.001						
Ver Scale 200										
Datum (m)61.000										
PN				2	002		2.0	00		
Dia (mm)				-	75		30			
Slope (1:X)					9.9		199			
			Ċ	-						
Cover Level (m)			500	•	.373	.35		.890		
			9	8	66	66		66		
				0	ъ	6	6	2		
Invert Level (m)				620	765	805	809	012		
				64.	64.	64.	•	65.		
				-	9		-	J.		
Length (m)					986		40.5			

Donnachadh O'Brien & Associates											Page 2
Unit W9 E&F Ladytown BP Civic Amenity Centre											
Newhall Naas Kilmacredock									4		
Co Kildare Co Kildare								Mass			
Date 11/12/2018 Designed by P. Doyle									Micro		
File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien									Drainage		
XP Solutions Network 2016.1											
	Solucions			Net	WOLK	201	0.1				
	MH Name S7				S11				0	010	1
	MH Name		S/	SI.				S1	0	S12	
	Hor Scale 1500				E 000				4.000		
			1	.003	5.000				1.000		
	Ver Scale 200		T								
	Datum (m)61.000										
	PN			3.002		3.	001	001		.000	
	Dia (mm)			375		375				300	
	Slope (1:X)			200.5		20	0.2		1	99.8	
			325	106				5	+	210	
	Cover Level (m)								•		
			66.	99						66 6	
				<u>م</u> م	<u></u> ω						
	Invert Level (m)			. 485 . 598	598				86	041	
				64. 64.	64.598			, U	64.866	65.	
	T 11 ()		_			5.2	640			050	
	Length (m)			22.654		53	.649		34	.959	
	MIL Manua										
	MH Name			S10							
	Hor Scale 1500						3.000				
	Ver Scale 200										
	Datum (m)61.000										
	PN										
	Dia (mm)										
	Slope (1:X)										
	~					091		248			
	Cover Level (m)							•			
						66		66			
							9	∞			
	Invert Level (m)						9	948			
							64.	64.			
	Towards ()							_			
	Length (m)										

©1982-2016 XP Solutions

Unit W9 E&F Ladytown BP Civic Amenity Centre Newhall Naas Kilmacredock Co Kildare Co Kildare Micro Date 11/12/2018 Designed by P. Doyle File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien XP Solutions Network 2016.1	Donnachadh O'Brien & Associates		Page 3
Co Kildare Co Kildare Micro Date 11/12/2018 Designed by P. Doyle File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien	Unit W9 E&F Ladytown BP	Civic Amenity Centre	
Date 11/12/2018 Designed by P. Doyle MICro File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien Drainage	Newhall Naas	Kilmacredock	<u> </u>
File CIVIC AMENITY CENTRE 12 Checked by D. O'Brien	Co Kildare	Co Kildare	Micro
	Date 11/12/2018	Designed by P. Doyle	
XP Solutions Network 2016.1	File CIVIC AMENITY CENTRE 12	Checked by D. O'Brien	Diamacje
	XP Solutions	Network 2016.1	•

MH Name	S11	S	13
Hor Scale 1500 Ver Scale 200		3.001	
Datum (m)61.000			
PN		5.000	
Dia (mm)		375	
Slope (1:X)		200.2	
Cover Level (m)	66.106		66.108
Invert Level (m)		64.598	64.845
Length (m)		49.458	

©1982-2016 XP Solutions

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix E Surface Water Attenuation Calculations

DONNACHADH O'BRIEN Project Celbridge - Amenity Centre & ASSOCIATES CONSULTING ENGINEERS Project No. DOBA 1701 Total Site Title: 07-01-19 Calcs By мс Date: PRELIMINARY SURFACE WATER STORAGE ESTIMATE (NO LONG TERM STORAGE) **Catchment Characteristics** Greenfield Runoff Flows (Sites < 50 Ha) denotes Input Value Standard Average Annual Rainfal (SAAR) = 792 mm Soil Classification for Runoff Potential Based on FSR Maps Soil Index = 0.35 Soil 1 Total Site Area = 0.9900 lectares (ha) 0 % nfiltration Storm Return Period = 100 Years Soil 2 50 % Permissible Outflow per hectare, QBAR = 2.9 /s/ha Soil 3 50 % * Total Permissible Outflow= 2.91 Soil 4 0 % l/s Soil 5 0 Proposed Impermeable Area: Hardstanding 0.5920 ha .@ 80 % Impermeable Roofs 0.0347 ha .a 95 % Impermeable Proposed Open Space 0.3633 ha .@ 10 % Impermeable Rainfall Intensity from Met Eireann grow curve return 1 hectare = 10,000m² factor period 0.85 1 10 1.7 Duration Rainfall Intensity Factored Factored Rainfall Volume Permissable Storage 30 2.1 1/100 Dublin Intensity *** Rainfall *** Outflow Required 100 2.6 (m³/ha) (m³) (m³) (m³) (min) (mm) (mm/hr) (mm/hr) (mm) 200 2.9 15.3 183.6 220.3 18.4 183.6 100 1 99 5 10 21.4 128.4 154.1 25.7 256.8 139 2 138 15 25.2 100.8 121.0 30.2 302.4 164 3 162 30 31.1 62.2 746 37.3 373.2 203 5 197 60 38.5 38.5 46.2 46.2 462.0 251 10 240 120 47.6 23.8 28.6 57.1 571.2 310 21 289 180 58.8 19.6 23.5 70.6 705.6 383 31 352 240 66.6 16.7 20.0 79.9 799.2 434 42 392 360 75.4 12.6 15.1 90.5 904.8 491 63 428 540 82.3 9.1 11.0 98.8 987.6 536 94 442 720 93.2 7.8 9.3 111.8 1118.4 607 126 481 1080 101.8 5.7 6.8 122.2 1221.6 663 189 474 1440 111.7 4.7 5.6 134.0 1340.4 728 252 476 2880 120.5 25 3.0 144 6 1446 0 785 503 282 4320 154.2 1542.0 837 82 128.5 1.8 2.1 755 481 m³ 1.5 area 320.89 L1 20.00 L2 h Value of storage required = **Oversized Pipe Requirements for On-line Storage** Notes *Total Permissible Outflow calculated in accordance with GDSDS - Regional Drainage Policies (Volume 2 - Chapter 6) **Permissable Outflow per Hectare multiplied by growth factors Pipe dia. Length i.e. QBAR(m³/s)=0.00108x(Area)^{0.89}(SAAR)^{1.17}(SOIL)^{2.17} SOIL : Soil Index Values in range 0.15-0.5 of Catchment (mm) (m) values Available from the FSR. The Index derived 2100 139 from. 1500 272 (0.15Soil 1+ 0.30Soil 2 + 0.40Soil 3+ 0.45Soil 4+ 0.50Soil 5) 1200 426 (Soil 1+ Soil 2+ Soil 3+ Soil 4+Soil 5) 1050 556 *** Rainfall Intensity increased by 20% to comply with global warming effects as described in the 900 757 GDSDS - Regional Drainage Policies (Volume 2 - Section 6.3.2.4 - Table 6.2)

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix F Irish Water Pre-Connection Application

Pre-connection enquiry form

Industrial and commercial developments, mixed use

developments, housing developments, business developments

/ A

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink.

Please refer to the **Guide to completing the pre-connection enquiry form** on page 12 of this document when completing the form.

Section A | Applicant details

WPRN number (where available): \mid $_{
m N}$

2 Applicant details:

1

Registered company name (if applicable):	K	I	L	D	A	R	Ε	С	0	U	Ν	Т	Y	С	0	U
N C I L																
Trading name (if applicable): N / A																
Company registration number (if applicable	e):	N	/	А												

If you are not a registered company/business, please provide the applicant's name:

Cor	ntact	nar	me:		J	0	E		В	0	L	A	N	D															
Pos	tal a	lddr	ess	•	D	Ε	V	0	Y		Р	A	R	K	,		N	A	A	S	,		С	0	U	Ν	Т	Y	
K	I	L	D	A	R	Ε																							
Eirc	ode	•			W	9	1	Х	7	7	F																		
Tele	epho	one:			0	4	5		9	8	0	2	0	0															
Mo	bile:				0	4	5		9	8	0	2	0	0															
Ema	ail:				j	0	e	b	0	1	a	n	d	G	k	i	1	d	a	r	е	С	0	С	0	•	i	е	

3 Agent details (if applicable):

Cor	ntaci	t na	me:		P	A	U	L		D	0	Y	L	Ε															
Cor	тра	ny r	nam	e (if	ар	olica	able):	D	0	Ν	Ν	A	С	Η	A	D	H		0	'	В	R	I	Е	Ν			
Pos	stal a	addı	ress	:	U	N	I	Т		5	С	,		Е	L	М		H	0	U	S	Е	,		М	Ι	L	L	Е
Ν	N	I	U	М		P	A	R	K	,		Ν	A	Α	S	,		С	0	•		K	Ι	L	D	А	R	Ε	
Eiro	code	:			W	9	1	Ρ	9	Ρ	8																		
Tel	epho	one			0	4	5		9	8	4	0	4	2															
Em	ail:				р	a	u	1	G	d	0	b	r	i	е	n	-	е	n	g	i	n	е	е	r	S		i	е

4	Please indicate whether it is the applicant or agent who should receive future correspondence in
	relation to the enquiry:

				_	the	e er	nqu	iry:									1														
	Арр	li	can	t [Age	ent	✓															
:1	tior	۱ I	B	Si	te	de	tai	s																							
	Site	e a	dd	res	s:	K	I	L	М	A	С	R	E	D	0	С	K	,		С	0	U	N	Т	Y		K	I	L	D	Ī
	R]	Ξ																												Γ
	Iris	h	Crit	d c	~ ~	rdi	nat	05.0	fci	to					с	(V)	2	9	7	2	3	5		N	(Y)	2	3	5	4	0	1
												+ □	المين			(X) (X) -				2									-		Ľ
	Eg.	cc	o-or	ain	ate	es o	I GP	<i>'</i> 0, (onne	ell 2	ι., D	udu	in:	E	(X) :	315,	8/8						IN	(Y).	234,	619				
	Loc					-	at g	rant	ed I	olan	nin	g pe	ermi	issic	on (i	fap	plica	able):												
	N	,	/].	A																											Γ
	If 'Y	es	', pl	eas	se	oro	vide	the	e cui	rren	t or	pre	eviou	us p	lanı	ning	ref	erer	nce	nun	nbei	r:									Г
							1		1	1						1								1		1		1			1
	Pre	vi	ous	s us	se o	of ti	his	site	(if	арр	lica	ble):	N	/	A															
	Dat	e	tha	at p	ore	vio	us (dev	eloj	ome	ent	was	s las	st o	ccu	pie	d (if	ар	plic	abl	e):]/			//				Γ
																														•	
													cito	2										v	'es		1				
	Are	t	her	e p	00	r gr	้อนเ	nd c	ond	ditio	ons	on-	SILC	•											00		J			No	V
	Are If 'Y to d	es	', pl	eas	se i	nclu	Jde	site	e inv	esti	gati	on r	ерс	ort a										on t	he	app	 road	ch b			L● ke
	If 'Y	es le	', pl al w	eas rith	se i gro	nclı oun	ude Id co	site ond	inv itior	esti ns sp	gati oeci	on r fical	repc lly w	ort a vith	rega									on t hing	he	app	 road	ch b	ein		
	lf 'Y to d	es le t	', pl al w her ', pl	eas rith e p eas	se i gro ot	nclu oun ent	ude id co ial (ude	site ondi cont a de	e inv itior tam etai	esti ns sp i ina led :	gati peci ted site-	on r fical lan -spe	repo Ily w d is ccific	ort a vith s sue	rega es?	ard on	to p the	ipe app	sup oroa	por ch k	t an bein	d tr g ta	enc	on t hinş Y	che a g. ′es]		ein	g ta No	v

Section C | Water connection and demand details 14 Is there an existing connection to public water mains at the site? Yes 15 Is this enquiry for an additional connection to the one already installed? Yes 16 Is this enquiry to increase the size of an existing water connection? Yes No 17 Is this enquiry for a new water connection? Yes No 5 2 0 1 9 0 1 1 18 Approximate date water connection is required:

19 Please indicate pre-development water demand (if applicable):

Pre-development peak hour water demand	N/A	l/s
Pre-development average hour water demand	N/A	l/s

Pre-development refers to brownfield sites only. Please include calculations on the attached sheet provided.

20 Please indicate the domestic water demand (housing developments only):

Post-development peak hour water demand	N/A	l/s
Post-development average hour water demand	N/A	l/s

Please include calculations on the attached sheet provided.

21 Please indicate the business water demand (shops, offices, schools, hotels, restaurants, etc.):

Post-development peak hour water demand	N/A	l/s
Post-development average hour water demand	N/A	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

22 Please indicate the industrial water demand (industry-specific water requirements):

Post-development peak hour water demand	0.1	l/s
Post-development average hour water demand	0.02	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

23 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?

6	6		0	0	m
---	---	--	---	---	---

24 What is the highest finished floor level of the proposed development above Malin Head Ordnance Datum?

25 Is on-site water storage being provided?

Please include calculations (details and capacity) of all water storage provided on-site on the attached sheet provided.

26 Are there fire flow requirements?

Additional fire flow requirements over and above those identified in Q20, Q21 and Q22 above	N/A	l/s

Please include calculations on the attached sheet provided, and include confirmation of requirements from the Fire Authority.

27 Do you propose to supplement your potable water supply from other sources?

No 🖌

If 'Yes', please indicate how you propose to supplement your potable water supply from other sources (see **Guide to completing the application form** on page 12 of this document for further details):

Sec	ction D Wastewater connection and discharge details		
28	Is there an existing connection to a public sewer at the site?	Yes	No 🖌
29	Is this enquiry for an additional connection to one already installed?	Yes	No 🖌
30	Is this enquiry to increase the size of an existing connection?	Yes	No 🖌
31	Is this enquiry for a new wastewater connection?	Yes	No 🖌
32	Approximate date that wastewater connection is required:	0 5 / / _	

33 Please indicate pre-development wastewater discharge (if applicable):

Pre-development peak discharge	N/A	l/s
Pre-development average discharge	N/A	l/s

Pre-development refers to brownfield sites only. Please include calculations on the attached sheet provided.

34 Please indicate the domestic wastewater hydraulic load (housing developments only):

Post-development peak discharge	N/A	l/s
Post-development average discharge	N/A	l/s

Please include calculations on the attached sheet provided.

35 Please indicate the commercial wastewater hydraulic load (shops, offices, schools, hotels, restaurants, etc.):

Post-development peak discharge	N/A	l/s
Post-development average discharge	N/A	l/s

Please include calculations on the attached sheet provided.

No

No 🗸

Yes

Yes

Yes

36 Please indicate the industrial wastewater hydraulic load (industry-specific discharge requirements):

Post-development peak discharge	N/A	l/s
Post-development average discharge	N/A	l/s

Please include calculations on the attached sheet provided.

37 Wastewater organic load:

Characteristic	Max concentration (mg/l)	Average concentration (mg/l)	Maximum daily load (kg/day)
Biochemical oxygen demand (BOD)			
Chemical oxygen demand (COD)			
Suspended solids (SS)			
Total nitrogen (N)			
Total phosphorus (P)			
Other			

Temperature range	
pH range	

38 Storm water run-off will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites, please indicate if the development intends discharging surface water to the combined wastewater collection system:

No 🗸

No 🗸

m

Yes

Yes

If 'Yes', please give reason for discharge and comment on adequacy of SUDS/attenuation measures proposed.

Please submit detailed calculations on discharge volumes, peak flows and attenuation volumes with this application.

39 Do you propose to pump the wastewater?

If 'Yes', please include justification for your pumped solution with this application.

- 40 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?
- 41 What is the lowest finished floor level on-site above Malin Head Ordnance Datum?

42 Please outline the domestic and/or industry/business use proposed:

Property type	Total number of units for this application
Domestic	
Office	
Residential care home	
Hotel	
Factory	
School	
Institution	
Retail unit	
Industrial unit	
Other (please specify)	CENTRE WITH 4 BUILDINGS (1) SATFF BUILDING (2) PAY POINT BUILDING (3) WEIGHBRIDGE BUILDING (4) HAZARDOUS F +

43 Approximate start date of proposed development:

44 Is the development multi-phased?

0	5	/	0	6	2	0	1	9
	-							

No

Yes

If 'Yes', application must include a master-plan identifying the development phases and the current phase number.

If 'Yes', please provide details of variations in water demand volumes and wastewater discharge loads due to phasing requirements.

Please provide the following additional information:

- > Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details:
 - a) The scale shall be clearly indicated on the map.
 - b) The boundaries shall be delineated in red.
 - c) The site co-ordinates shall be marked on the site location map.
- > Details of planning and development exemptions (if applicable).
- > Calculations (calculation sheets provided below).
- Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure (if known).
- > All design submissions as outlined in the Irish Water Codes of Practice for Water Infrastructure and the Irish Water Codes of Practice for Wastewater Infrastructure, including the layout of all other services to be provided within the site (for example: gas, electricity, telecommunications).
- > Any other information that might help Irish Water assess this pre-connection enquiry.

Section G | Declaration

I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form.

I/We understand that any alterations made to this application must be declared to Irish Water.

The details that I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Signature:	Paul Doyle Digitally signed by Paul Doyle D-DGR. 01–02, E-mcoffy@dobrien-engineers.ie, 0-DGR. 01–028, CN-Paul Doyle Date: 2018.12.04 17:37:3220000'	Date: 0 4 / 1 2 / 2 0 1	8

Your full name (in BLOCK CAPITALS):

P A U L D O Y L E	
-------------------	--

Irish Water will carry out a formal assessment based on the information provided on this form. Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to **newconnections@water.ie** or alternatively, post to:

Irish Water
PO Box 860
South City Delivery Office
Cork City

For office use only:
put customer number:

Calculations

Water demand

AMENITY CENTRE DEMAND

- UNITS = 4

- OCCUPANCY = 10 PERSONS

- CONSUMPTION = 150 LITRES/ PERSON/ DAY x 10 PERSONS = 1,500 LITRES/ DAY

AVERAGE HOUR DAILY DEMAND

- 1,500 LITRES/ DAY x 1.25 = 1,875 LITRES/ DAY
- 1,875/ (24 x 60 x 60) = 0.02 LITRES/ SECOND

PEAK HOUR DAILY DEMAND - 0.02 x 5 = 0.1 LITRES/ SECOND Kildare County Council c/o Paul Doyle UNIT 5C Elm House Millenium Park Naas Co. Kildare

07 January 2019

Dear Sir/Madam,

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

Re: Customer Reference No 6703943751 pre-connection enquiry - Subject to contract | Contract denied Connection for Civic Amenity Centre at Kilmacredock, County Kildare.

Irish Water has reviewed your pre-connection enquiry in relation to a water connection at KILMACREDOCK, COUNTY KILDARE. Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

The confirmation of feasibility to connect to the Irish Water infrastructure does not extend to your fire flow requirements. While flows in excess of your required demand may be achieved in the Irish Water network and could be utilised in the event of a fire, Irish Water cannot guarantee a flow rate to meet your fire flow requirement. To guarantee a flow to meet the Fire Authority requirements you should provide adequate fire storage capacity within your development.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water infrastructure should be submitted to Irish Water for assessment.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact us on 1850 278 278 or +353 1 707 2828, 8.00am-4.30pm, Mon-Fri or email **newconnections@water.ie**. For further information, visit www.water.ie/connections

Yours sincerely,

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Eamon Gallen, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan Offg Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix G Foul Drainage Network Calculations

Donnachadh O'Brien & Associates		Page 1
Unit W9 E&F Ladytown BP	Civic Amenity Centre	
Newhall Naas	Kilmacredock	4
Co Kildare	Co Kildare	
Date 11/12/2018	Designed by P. Doyle	
File CIVIC AMENITY CENTRE 12		Drainag
XP Solutions	Network 2016.1	
AF SOLUCIONS	Network 2010.1	
FOU	L SEWERAGE DESIGN	
Design Cri	teria for Foul Network 1	
Pipe Sizes ST	ANDARD Manhole Sizes STANDARD	
Industrial Flow (l/s/ha) 0	Add Flow / Climate Change	
	0.00 Minimum Backdrop Height	
Flow Per Person (l/per/day) 200 Persons per House 3	0.00 Maximum Backdrop Height 3.00 Min Design Depth for Optimisation	
-	0.00 Min Vel for Auto Design only (m,	
Domestic Peak Flow Factor 6	5.00 Min Slope for Optimisation (1	
- '	ned with I and Township	
Desig	ned with Level Inverts	
Network Desig	yn Table for Foul Network 1	
	·	
PN Length Fall Slope Area Hou	uses Base k HYD DIA Section	Type Auto
(m) (m) (1:X) (ha)	Flow $(1/s)$ (mm) SECT (mm)	Design
1.000 57.813 0.289 200.0 0.000	1 0.0 1.500 o 225 Pipe/Co	onduit 🥚
1.001 26.928 0.135 200.0 0.000	0 0.0 1.500 0 225 Pipe/Co	
1.002 49.793 0.249 200.0 0.000	2 0.0 1.500 o 225 Pipe/Co	nduit 🥚
1.003 30.555 0.153 199.7 0.000	0 0.0 1.500 o 225 Pipe/Co	
1.004 1.953 0.010 195.3 0.000	0 0.0 1.500 o 225 Pipe/Co	nduit
Netv	work Results Table	
PN US/IL Σ Area Σ Base	Σ Hse Add Flow P.Dep Vel Cap Fl	
(m) (ha) Flow (l/s)) $(1/s)$ (mm) (m/s) $(1/s)$ $(1/s)$	s)
1.000 64.200 0.000 0.0	0 1 0.0 6 0.81 32.2 0	0.0
1.001 <mark>63.911</mark> 0.000 0.0		0.0
1.002 63.776 0.000 0.0).1
1.003 63.527 0.000 0.0).1
1.004 63.374 0.000 0.0	0 3 0.0 10 0.82 32.6 0	0.1
Simulation C	riteria for Foul Network 1	
Volumetric Punoff Cooff	0.750 Additional Flow - % of Total Flow	
Areal Reduction Factor		
Hot Start (mins)	0 Inlet Coefficie	-
Hot Start Level (mm)	0 Flow per Person per Day (l/per/da	ay) 0.000
Manhole Headloss Coeff (Global)		
Foul Sewage per hectare (l/s)	0.000 Output Interval (min	ns) 1
Number of Input Budrog	raphs 0 Number of Storage Structures 0	
	trols 0 Number of Time/Area Diagrams 0	

Number of Offline Controls 0 Number of Real Time Controls 0 $% \left({{\left({{{\left({{{\left({{{}_{{\rm{c}}}} \right)}} \right)}_{{\rm{c}}}}} \right)}_{{\rm{c}}}} \right)$

Synthetic Rainfall Details

©1982-2016 XP Solutions

Donnachadh O'Brien & Associates		Page 2
Unit W9 E&F Ladytown BP	Civic Amenity Centre	
Newhall Naas	Kilmacredock	L'
Co Kildare	Co Kildare	Micco
Date 11/12/2018	Designed by P. Doyle	
File CIVIC AMENITY CENTRE 12	Checked by D. O'Brien	Diamacje
XP Solutions	Network 2016.1	

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Sum	mer
Return Period (years)	5	Cv (Summer) 0.	750
Region	Scotland and Ireland	Cv (Winter) 0.	840
M5-60 (mm)	15.900	Storm Duration (mins)	30
Ratio R	0.277		

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix H Foul Drainage Longitudinal Sections

onnachadh O'Brien & nit W9 E&F Ladyto	& Assoc own BP	lates	Civic	Ame	nity Cer	itre		Page	1
ewhall Naas	JWII DF		Kilma			ICT C		4	
									7~
o Kildare			Co Ki					– Micí	0
ate 11/12/2018					by P. Do			Drai	
ile CIVIC AMENITY (CENTRE	12			ру D. О'Е	Brien		Didi	i lug
? Solutions			Netwo	rk 2	2016.1				
MH Name	F5			F4	F3			F1	
Here Grade 1500									
Hor Scale 1500									
Non Geole 200	-								
Ver Scale 200									
Datum (m)60.000									
PN		1	002		1.001		1.000		
Dia (mm)			25		225		225		
Slope (1:X)			0.0		200.0		200.0		
		20						4	
Cover Level (m)	370			118	380			21	
	. 99			66.	. 99			66.214	
Invert Level (m)	527			63.776	911	63.911		200	
	63.527			63.	0			64.2	
	0			90		v		9	
Length (m)		49	.793		26.928		57.813		
· · ·					1				
MH Name				F7		F5			
				-					
Hor Scale 1500									
Ver Scale 200									
Datum (m)60.000									
PN					1.003				
Dia (mm)					225				
Slope (1:X)					199.7				
				500		370			
Cover Level (m)				. 5(τ.			
				66.		66.			
					4	~			
Invert Level (m)					63.374	527			
					63.	63.			
Taranth ()				1	20 555				
Length (m)					30.555				

DONNACHADH O'BRIEN & ASSOCIATES CONSULTING ENGINEERS

Appendix I Traffic & Transport Assessment

Kildare Civic Amenity Centre, Celbridge, Co. Kildare

THE P

ECOM Imagine Deliver

Traffic and Transport Assessment

Kildare County Council

Project number: 60583150 Traffic and Transport Assessment

26th November 2018

Quality information

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	24.08.18	Working Draft	МК	Mary Kennedy	Principal
1	26.11.18	Planning	МК	Mary Kennedy	Principal

Distribution List

Hard Copies PDF Required Assoc

Association / Company Name

Prepared for:

Kildare County Council

Prepared by:

Theodore Jones Graduate Consultant

AECOM Ireland Limited 24 Lower Hatch Street Dublin 2 D02 TY88 Ireland

T: +353 1 676 3671 aecom.com

Google Earth Pro^{TM} imagery in the form of Google MapTM and Google StreetviewTM have been used, unmodified, within this document. This imagery has been used within the extents of the AECOM license agreement with Google Inc.

© 26th November 2018 AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1. Introduction	6
Background	6
Planning Policy	6
Objectives	
Pre-application consultation	6
Study Methodology	
Structure of Report	7
2. Receiving Environment	8
Introduction	8
Existing Site	8
Existing Road Network	9
Existing Traffic Flows	9
Public Transport	9
Potential / Committed Infrastructure	
Planning History	
Road Collisions	11
3. Proposed Development	12
Development Details	12
Site Access	12
Visibility Requirements	12
Servicing	13
Parking	13
Proposed Internal Pedestrian Layout	13
4. Trip Generation and Distribution	14
General	
Extant Trip Generation	
Proposed Development Trip Rates and Generation	14
Trip Distribution	15
5. Development Impact	16
Introduction	16
Considered Scope of Assessment	16
Study Area for Highway Network Assessment	16
Peak hours	
Assessment Years and Scenarios	
Junction Turning Counts	
Initial Traffic Growth for Junction 2: R449 / R405 Three-arm Roundabout	
Traffic Growth	
Threshold Analysis	
Percentage Change Assessment	
Capacity Assessment Junction Models	
Junction Modelling Results	
R449 / R405 Roundabout	
R449 / Site Access Junction	
6. Mobility Management	
Introduction	
Objectives	
7. Construction Management Plan	
Policy Guidance	23

Likely Construction Programme / Phasing	23
Construction Route	23
Parking	23
Mitigation Measures	23
Hours of Operation	23
Traffic Management Measures	24
8. Summary and Conclusions	25
Summary	25
Conclusions	25
Appendix A – Pre-application Scoping	26
Appendix B – Flow Diagrams	27
Appendix C – Trip Generation Technical Note	28
Appendix D – Junction Modelling Results	29

Figures

Figure 1.	Indicative Site Location (source: Google Maps)	8
Figure 2.	Road Safety Analysis (source: Road Safety Authority)	11
Figure 3.	Proposed Development (source: Design Team)	12
Figure 4.	Visibility Standards (source: TII DN-GEO-03060, Page 43)	13
Figure 5.	Junctions Assessed (source: Google Maps)	14
Figure 6.	Catchment Population (source: Donnachadh O'Brien and Associates)	15

Tables

Table 1 – Public Transport	10
Table 2 – Road Safety Analysis	.11
Table 3 – Proposed Trip Rates Per Hectare	
Table 4 – Proposed Trip Generation	15
Table 5 – Traffic Growth Calculation	17
Table 6 – Growth Rates	17
Table 7 – Percentage Change Assessment	18
Table 8 – Summary of Junction Performance	19
Table 9 – Summary of Junction Performance	19
Table 10 – Sample Mobility Management Measures and Actions	21

1. Introduction

Background

AECOM has been commissioned by Kildare County Council (KCC) to prepare a Traffic and Transport Assessment to accompany a planning application for a Civic Amenity Centre (CAC) at a site to the north of the R449, Celbridge, County Kildare.

The proposed development comprises of a CAC site of approximately 1.0 hectares to serve the north of County Kildare. Access to the proposed development will be via the R449, with on-site parking provision.

Planning Policy

In order to complete this report, AECOM has made reference to the following documents:

- The Traffic Management Guidelines 2003 (jointly published by the DOELG, DTO, DOT);
- Design Manual for Urban Roads and Streets, March 2013 (Dept. of Transport, Tourism and Sport/Dept. of Environment, Community & Local Government);
- DTO Advice Note Mobility Management Plans;
- Transport Infrastructure Ireland "Traffic and Transport Assessment Guidelines" May 2014;
- Transport Infrastructure Ireland "Geometric Design of Junctions" April 2017;
- Kildare County Development Plan 2017 2023;
- Greater Dublin Area Transport Strategy 2016 2035; and
- The National Transport Authority's Greater Dublin Area Cycle Network Plan 2013

Objectives

The main objective of this report is to examine the traffic and transport impact of the proposed development and the access to the local area road network. The net change in traffic on the network due to the additional traffic has been calculated and its influence on the local road network has been investigated.

Pre-application consultation

Pre-application consultation took place with Kildare County Council as part of the wider project pre-application consultation. Further to this, a scope was submitted to George Willoughby of Kildare County Council on 17th August 2018. This is appended to this report, in Appendix A.

Study Methodology

The methodology adopted for this report can be summarised as follows:

- A review of existing conditions in terms of site accessibility has been undertaken;
- Traffic surveys to identify existing traffic levels have been undertaken;
- A percentage change assessment to identify the impact of the proposed development at the junctions within the study area during the AM and PM weekday peak hours has been carried out.

Structure of Report

The remainder of the report is divided into the following sections:

- Section 2 considers the location of the site and existing conditions;
- Section 3 discusses the proposed development;
- Section 4 considers the traffic generation and potential impacts of the development;
- Section 5 contains an analysis of capacity of the key junctions of the proposed development;
- Section 6 discusses the development's mobility management plan;
- Section 7 reviews the construction management requirements; and
- Section 8 provides a summary and conclusion.

2. Receiving Environment

Introduction

This section of the TTA reviews the existing transport conditions in the vicinity of the proposed development. The chapter will provide a description of the existing site operation and location, a review of the existing walking, cycling and public transport facilities in the vicinity of the proposed development and a description of the existing highway network.

Existing Site

The proposed development is located approximately 2.2km north of Celbridge and 3.2km west of Leixlip, on a parcel of land between the R449 and the M4, approximately 0.3km from Junction 6 of the M4. Celbridge is the nearest town, with a population of 20,288 (2016).

The majority of the site is undeveloped. It is bounded by a field to the west, the M4 to the north, the existing KCC roads compound to the east, and by the R449 to the south. The topography is reasonably flat and there is no proximate residential development.

Restricted vehicular access into the site is possible off the R449. An electronic gate prevents unauthorised access into the site, and it also provides access for the KCC roads compound immediately to the east of the site.

The site location is shown indicatively in **Figure 1** below.

Figure 1. Indicative Site Location (source: Google Maps)

Existing Road Network

The site is located to the north of the R449, a regional road connecting R405 to the south with R148 to the north, and intersecting at M4 Junction 6. In the vicinity of the site, the road is single carriageway with lane markings. The speed limit fronting the site is 60kph.

On both sides of the road, there is a parallel footway and cycle lane, see Photo 1.

Photo 1

To the east, the R449 leads to a large five-arm two-lane roundabout. From this roundabout, the M4 can be accessed both eastbound and westbound directions via slip roads. In addition, there are further exits for the R449 northbound towards Collinstown Industrial Estate and Barnhall Road eastbound towards Hewlett Packard Enterprises. The M4 is a two lane motorway linking to the M50 Dublin Ring Road via a section of the N4 dual carriageway to the east and linking to the M6 and the N4 dual carriageway to the west.

To the west, the R449 leads to a three-arm roundabout. From here, the R405 can be taken northwest towards Maynooth or southeast towards Celbridge.

Existing Traffic Flows

Relevant traffic flows were sourced from submitted planning applications in the vicinity of the area at the following junctions:

- 1. M4 Junction 6 Five-arm Roundabout; and
- 2. R449 / R406 Three-arm Roundabout

The data gathered confirm that the peak hours occur between 08:00 and 09:00 and between 18:00 and 19:00. The level of traffic travelling through each junction is considered to be representative of a normal weekday in this area of County Kildare. The resulting traffic flows are illustrated in **Appendix B**.

Public Transport

There are no bus stops or bus routes on the R449. The closest bus stop to the site is located on the R405, approximately 1.1km from the site. The Salesian College (Celbridge) bus stop is served by Bus Routes 67, 67-N and 67x, detailed in **Table 1** below.

Table 1 – Public Transport

Location	Route No.	Route Description	Frequency Monday to Friday	Frequency Saturday	Frequency Sunday	Operator
Celbridge, Salesian College	67	Merrion Square, Dublin - Maynooth	Every 30 minutes	Every 30 minutes	Every 30 minutes	Dublin Bus
Celbridge, Salesian College	67n	Westmoreland Street, Dublin – Maynooth (outbound only)	No Service Mon- Thurs. Fri: 4x overnight	4x overnight	No Service	Dublin Bus
Celbridge, Salesian College	67	University College Dublin (UCD)Belfield – Celbridge (Salesian College)	6x a day. Morning - to UCD; evening - from UCD	No Service	No Service	Dublin Bus

Table 1 demonstrates that the bus stop nearest to the proposed development is served regularly by buses.

The closest railway station to the site is Leixlip (Louisa Bridge), 3.0km to the northeast. The station provides services eastward to Dublin Connolly and Dublin Pearse; and westward to Maynooth.

Walking and Cycling Facilities

The R449 has a footway and a cycle lane on both sides of the carriageway. The footway links with the Celbridge urban footpath network to the south and the Leixlip urban footpath network to the northeast. There are no controlled crossing points along the length of the R449. The nearest controlled crossing is approximately 800m from the site, in the form of a light-controlled pedestrian crossing across the R405, adjacent to the R449 / R405 Three-arm Roundabout.

The cycle lanes adjacent to the R449 carriageway on either side continue for the length of the R449 and into neighbouring roads. The cycle lanes continue towards: Salesian College and Celbridge to the west and south; Hewlett Packard Enterprise to the east; and Collinstown Industrial Park and Leixlip to the north and northeast. At the side road accesses and all junctions, the cycle lanes give way to the road.

Potential / Committed Infrastructure

The Kildare County Development Plan 2017 – 2023 is the adopted development plan relevant to this site. The site is part of the Dublin Metropolitan Area, centred between the Large Growth Towns of Maynooth and Leixlip, and the Moderate Sustainable Growth Town of Celbridge. A Large Growth Town is strategically positioned to make the most of their connectivity and high quality connections to Dublin City Centre, whilst also supporting and servicing a wider local economy. They are important centres for delivery of public services.

The Greater Dublin Area Transport Strategy 2016-2035 highlights proposed infrastructure improvements for the wider Greater Dublin Area. The Dublin Area Rapid Transit (DART) has an expansion programme, to include the current heavy rail line between Dublin and Maynooth. This would bring fast, high-frequency electrified services to the nearest rail station to the site, Leixlip (Louisa Bridge). This document also highlights the R449 as a road identified for improvement along its entire length.

The National Transport Authority's Greater Dublin Area Cycle Network Plan 2013 highlights potential cycle routes in the Greater Dublin area. These routes in the vicinity of the site are proposed to be implemented:

- C6 R405 Maynooth Road
- C7 R449 Celbridge to Leixlip Link Road (across M4 Junction 6)
- C8/C8a/C8b Castletown Demesne Greenways to Barnhall Road, Leixlip and links to C6 and C7.

Additionally, Intel has committed development to the north of the M4.

Planning History

There are no directly applicable planning permissions or applications within the site or in the immediate vicinity of the subject site.

Road Collisions

An analysis was completed of the injury collision data for Ireland contained in the Road Safety Authority's online map. The analysis area and collision locations are shown in **Figure 2** below:

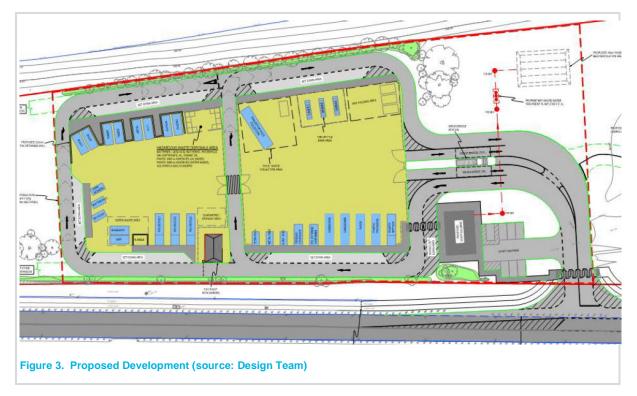
Four collisions took place in the vicinity of the proposed development in the period between 2005 and 2014, inclusive. These are summarised in **Table 2** below:

Table 2 – Road Safety Analysis

Year	Severity	Location	No. of casualties	Circumstance
2011	Minor	M4, north of subject site	1	Car, Other
2012	Minor	R449, south of subject site	1	Car, Single Vehicle
2013	Fatal	R449, south of subject site	1	Car, Head-on conflict
2014	Minor	M4, north of subject site	1	Rear end, straight

The fatality happened on the R449 adjacent to the site, on a Wednesday daytime between the hours of 10am and 4pm. It happened on a section of road with a gradual curve, a 60kph speed limit and long sightlines and no junctions. In addition, the small sample size and different circumstances of the other collisions mean that no trends can be asserted.

It is not evident that there are road safety issues that would be exacerbated by the proposed development.

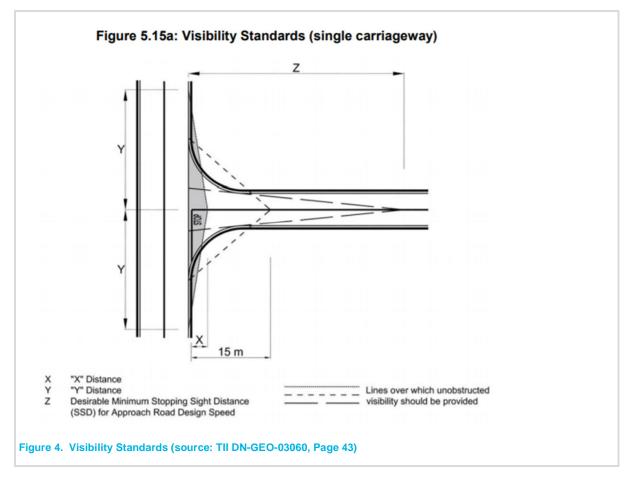

3. Proposed Development

Development Details

The proposed development consists of a Civic Amenity Centre (CAC) to serve the north of County Kildare, 1 hectare in size.

The CAC will be split into two parts. The eastern part will be for the non-chargeable waste stream, for the disposal of: glass bottles, paper and cardboard, plastic bottles and plastic packaging, aluminium cans and metal cans, Tetra Pak, textiles, polystyrene and white goods, electrical goods and electronic goods. The western part will be for the chargeable waste stream, for the disposal of green waste, bulky waste, DIY and plasterboard, household hazardous, timber waste, flat glass, metal and residual household waste.

The proposed layout is shown in Figure 3 below.


Site Access

One site access to the public road network is proposed. The site will be accessed via a priority junction on the R449. The R449 will be widened at the site access, with the provision of a dedicated right turn lane. An internal road will provide access into the site, with a secondary road off this road constructed to access the existing KCC roads compound to the east.

The pedestrian and cycle lanes on the north of the R449 will also be realigned. At the site access, there will be provision of dropped kerbs, tactile paving and zebra crossing road marks. Pedestrians can also enter the site here.

Visibility Requirements

Sightlines for the proposed junction onto the R449 have been assessed in line with the requirements of TII's Geometric Design of Junctions (April 2017), replicated in **Figure 4** below.

The visibility requirements for the speed limit of the major road of 60kph (design speed of 70kph) have been tested at the R449 access to the site. The desirable minimums are as follows:

X = 2.4m (desirable minimum)

Y = 120m

It has been confirmed that the access can achieve the required visibility splays.

Servicing

The proposed access junction and internal road network has been designed with road widths and radii of sufficient dimensions to enable manoeuvring by all vehicles that will use the site. A swept path has been undertaken in AutoCad (Autotrack) to demonstrate that a refuse vehicle and fire tender will be able to turn into and out of the access and also travel through the site and turn to exit in a forward direction, as illustrated in the drawings package submitted as part of this application.

Parking

It is proposed to provide a total of 7 staff car parking spaces, including one disabled parking space. The car park is to be located on site, adjacent to the staff building. No bicycle parking provision is proposed. These numbers are as agreed with KCC.

Proposed Internal Pedestrian Layout

Pedestrian access into the site will be provided at the western side of the proposed priority junction access from the R449. A footway is to be provided to lead to the proposed staff building. From the staff building, the eastern part of the civic amenity can then be accessed. Two crossing points, in the form of dropped kerbs, tactile paving, and zebra crossing marks are provided. Footway widths are minimum 1.8m in width as per DMURS guidance.

4. Trip Generation and Distribution

General

The purpose of this section is to determine the overall number of trips that will be generated by the proposed development. The traffic generated by the proposed development has been distributed onto the adjacent road network to allow a traffic assessment of future conditions in line with Transport Infrastructure Ireland (TII) guidance. **Figure 5** below shows the relevant junctions in relation to the subject site:

Figure 5. Junctions Assessed (source: Google Maps)

Extant Trip Generation

The site currently comprises of a field, with access to an adjacent compound via the site. The access is gated. The level of trips generated using the gated access has not been ascertained via a traffic survey and therefore the exact number of trips generated during the local road network peak hours cannot be derived. For robustness, it has been assumed that there are no trips generated by the existing site, and all generated trips are new to the network.

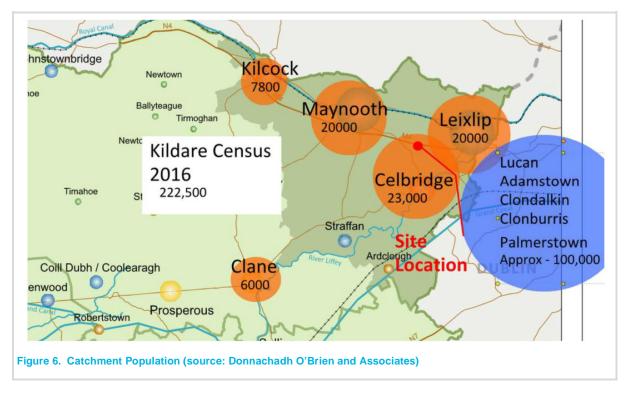
Proposed Development Trip Rates and Generation

A trip generation assessment was completed with reference to peer Civic Amenity sites, and also with reference to the Trip Rate Information Computer System (TRICS V. 7.5.2). This trip generation assessment is included in **Appendix C**.

The trip rates and the resulting trip generations for the peak periods are illustrated in **Table 3** and **Table 4** below.

Table 3 – Proposed Trip Rates Per Hectare

Development	TRICs Land Use	AM Peak Hour (08:00 – 09:00)		PM Peak H	PM Peak Hour (18:00 – 19:00)	
		Arrivals	Departures	Arrivals	Departures	
Civic Amenity Centre	07 V - Library	57.792	58.442	14.563	21.359	


Table 4 – Proposed Trip Generation

Development	Development Size	AM Peak Hour (08:00 - 09:00)		PM Peak Hour (18:00 – 19:00)	
		Arrivals	Departures	Arrivals	Departures
Civic Amenity Centre	1 hectare	58	58	15	21
Peak Hour Totals		116		36	

Table 4 demonstrates that the anticipated trip generations associated with the development are 116 and 36 trips respectively during the morning (08:00 - 09:00) and evening (18:00 - 19:00) peak hour periods.

Trip Distribution

Development trips have been distributed across the network proportionally using the catchment population – shown in **Figure 6** below.

Trip distribution was calculated using the Directions feature in Google Maps, and routes were chosen based on which route allowed for the quickest trip time at the morning peak of 8am. This time was chosen as it was assumed that this was when the maximum congestion would be found on the network, and so it would be the time mostly applicable to both the peak hours. The same distribution pattern has been applied to both the AM and PM peak hours.

5. Development Impact

Introduction

This section of the TTA provides details regarding the operation of the existing highway network in the vicinity of the site, taking into account how trips associated with the proposed development will be distributed onto the local highway network and any potential implications. The scope of the assessment set out in the following paragraphs is considered comprehensive.

Considered Scope of Assessment

Study Area for Highway Network Assessment

An assessment of the level of increase in traffic flows associated with the proposed development has been undertaken at the following junctions:

- Junction 1: M4 Junction 6 Five-arm Roundabout; and
- Junction 2: R449 / R405 Three-arm Roundabout

Peak hours

Based on the 2016 traffic data at Junction 1, as included in nearby planning applications, the peak hours for the local highway network are identified as follows:

- AM Peak: 08:00 to 09:00 hours; and
- PM Peak: 18:00 to 19:00 hours.

Assessment Years and Scenarios

A number of scenarios have been considered to ascertain the impact of the proposed development on the local road network. The assessment scenarios are as follows:

- Baseline 2018 AM and PM peak hours;
- Opening Year 2020 Without and With Development AM and PM peak hours;
- Future Year 2025 Without and With Development AM and PM peak hours; and
- Future Year 2035 Without and With Development AM and PM peak hours.

Junction Turning Counts

The base Junction Turning Counts (JTCs) for the assessment junctions have been extracted from data as follows:

- Junction 1: 2016 data, from RFI response to Planning Ref 16/1229.
- Junction 2: 2011 data, from Intel Planning Application Ref 12725.
- Junction 3: 2016 data, from RFI response to Planning Ref 16/1229.

Initial Traffic Growth for Junction 2: R449 / R405 Three-arm Roundabout

Using the 2016 flow entering and exiting the R449 at Junction 1 as a reference point, the 2011 data at Junction 2 was adjusted to provide a 2016 baseline in line with the 2016 data at Junction 1. Eastbound and westbound factors were calculated and applied to the eastbound and the westbound JTCs at Junction 2 for both the AM and

PM peak hours. The JTCs that do not enter or exit the R449 have an overall growth factor applied in line with the overall increase in traffic at the junction.

Table 5 below shows the flows involved, the calculation made, and the resulting factors.

Time	Flow	2016 Base (1 hour) Junction 1	2011 Base (3 hour) Junction 2	Calculation	Factor applied to 2011 3-hour traffic at Junction 2 to bring to 2016 1-hour peak levels
AM	R449 Eastbound	553	1810	553÷1810	0.305524862
	R449 Westbound	188	544	188÷544	0.345588235
	Total	741	2354	741÷2354	0.314783347
PM	R449 Eastbound	652	1372	652÷1372	0.475218659
	R449 Westbound	757	2136	757÷2136	0.354400749
	Total	1409	3508	1409÷3508	0.401653364

Table 5 – Traffic Growth Calculation

Application of the relevant factors in **Table 6** above gives the result that the traffic entering and exiting the R449 at Junction 2 is equal to the traffic exiting and entering the R449 at Junction 1 respectively.

The overall percentage applied to the 2011 Base (3 hour) data to adjust it to a 2016 Base (1 hour) may be expected to be around or above 33.3% due to: 1 hour being one third of 3 hours; the hour being the peak hour out of the three and any growth in traffic over 5 years between 2011 and 2016. The results of this calculation give a factor of 31.5% in the AM and a factor of 47.5% in the PM. These percentages are in line with expectations, and are considered robust.

Traffic Growth

The TII Project Appraisal Guidelines for National Roads Unit 5.3 sets out growth rates for forecasting future year traffic. The central growth rates for the period 2013 to 2030 and 2030 to 2050 for the Mid-East region were used. As the JTC data extracted did not differentiate between Light Vehicles and Heavy Vehicles, the Light Vehicles growth rate was the one applied to showcase the worst case scenario. The growth rates applied are provided in **Table 7** below.

Table 6 – Growth Rates

	Time Length	Growth Rate (Light Vehicles)
2016 – 2018	2 Years	1.028196
2018 - 2020	2 Years	1.028196
2020 - 2025	5 Years	1.071988
2025 - 2035	10 Years	1.096219

Traffic flow diagrams illustrating the resulting traffic flows for the assessment scenarios set out above are included in **Appendix A**.

Threshold Analysis

The TII Guidelines for Transport Assessments state that the thresholds for junction analysis in Transport Assessments are as follows:

- 'Traffic to and from the development exceeds 10% of the existing two-way traffic flow on the adjoining highway.'
- 'Traffic to and from the development exceeds 5% of the existing two-way flow on the adjoining highway, where traffic congestion exists or will exist within the assessment period or in other sensitive locations.'

Percentage Change Assessment

A percentage change assessment has been undertaken. The results of the assessment are set out in **Table 7** below, which illustrates that there is a minimal change in traffic at both existing junctions in the baseline or opening year scenarios.

Table 7 – Percentage Change Assessment

		AM	PM				
Junctions	Arm	2020 Base / 2020 With Development	2025 Base / 2025 With Development	2035 Base / 2035 With Developme nt	2020 Base / 2020 With Developme nt	2025 Base / 2025 With Developme nt	2035 Base / 2035 With Developme nt
	R449 N	0%	0%	0%	0%	0%	0%
	M4 Slip E	6%	6%	5%	1%	1%	1%
1. M4 Junction 6	Barnhall Road SE	0%	0%	0%	0%	0%	0%
	R449 SW	7%	7%	6%	2%	2%	2%
	M4 Slip W	2%	2%	2%	1%	1%	1%
	ALL	4%	4%	3%	1%	1%	1%
	R449 NE	5%	5%	4%	0%	0%	0%
2. R449 / R405 Roundabout	R449 SE	1%	1%	1%	0%	0%	0%
	R405 NW	2%	2%	2%	0%	0%	0%
	ALL	2%	2%	2%	0%	0%	0%

The change at the junctions analysed confirms that the increase in traffic at both existing junctions do not exceed 10%, and therefore there is no requirement to assess them in terms of capacity.

However, the R449 / R405 Roundabout has been assessed to identify any potential existing issues with the junction that may be exacerbated by the development. It is being included for robustness.

Also, the site access priority junction has been assessed to ascertain its residual capacity.

Capacity Assessment Junction Models

In order to assess the traffic impact of the development on the site access priority junction, it has been necessary to build individual junction models. Therefore, the modelling work has been undertaken using nationally recognised modelling software Junctions 9 for priority junctions and roundabouts.

The following sections discuss the outcome of the capacity assessments undertaken for the junctions in all of the scenarios. Within these sections a number of acronyms are used. The meaning of these acronyms within the capacity assessment results are discussed below.

- RFC Ratio to Flow to Capacity (for priority junctions and roundabouts)
- Q Queue length (vehicles)

It is generally accepted that RFC values of 0.85 or less are indicators that a junction is operating within capacity. Although a junction would be said to be operating at capacity at a value of 1, the use of 0.85 allows for a margin of error and fluctuations in traffic flows. Junctions are therefore only identified as operating over capacity if these values are exceeded.

Junction Modelling Results

The results of the junction modelling are set out in the following paragraphs. To allow validation of the scenarios assessed, capacity assessments have also been carried out for the 2018 baseline scenario. The results are set out in the following sections with a copy of the outputs included at **Appendix D**.

R449 / R405 Roundabout

A capacity analysis has been undertaken and demonstrates that there is spare capacity at this junction, in all scenarios. **Table 8** below outlines the results.

Table 8 – Summary of Junction Performance

	With	out [Develo	pment	With Development			
Junction Approach	AM Peak		PM	Peak	AM PM Pea		eak	
	RFC	Q	RFC	Q	RFC	Q	RFC	Q
		201	8 Base	,				
1 - R449 NE	0.16	0.2	0.68	2.1	_			
2 - R405 SE	0.43	0.8	0.55	1.2	_			
3 - R405 NW	0.13	0.1	0.26	0.4				
2020 Opening Year								
1 - R449 NE	0.16	0.2	0.70	2.3	0.18	0.2	0.76	3.0
2 - R405 SE	0.45	0.8	0.56	1.3	0.49	0.9	0.60	1.5
3 - R405 NW	0.13	0.2	0.27	0.4	0.15	0.2	0.30	0.4
	20)25 F	uture Y	′ear				
1 - R449 NE	0.17	0.2	0.70	2.3	0.19	0.2	0.84	4.8
2 - R405 SE	0.45	0.8	0.56	1.3	0.53	1.1	0.66	2.0
3 - R405 NW	0.14	0.2	0.27	0.4	0.17	0.2	0.34	0.5
	20)35 F	uture Y	'ear				
1 - R449 NE	0.18	0.2	0.75	3.0	0.20	0.3	0.84	5.0
2 - R405 SE	0.48	0.9	0.60	1.5	0.53	1.1	0.67	2.0
3 - R405 NW	0.15	0.2	0.30	0.4	0.17	0.2	0.34	0.5

The results show that there are no existing capacity issues with the junction all the way to 2035 and with the development operational. The junction is currently operating within capacity and will continue to do so in the future years. Therefore, it is not considered necessary to consider mitigation at this junction.

R449 / Site Access Junction

A capacity analysis has been undertaken and demonstrates that there is considerable spare capacity at this junction, in all scenarios. **Table 9** below outlines the results.

Table 9 – Summary of Junction Performance

	With	out D	evelop	oment	With	With Development		
Junction Approach	AM Peak		PM	Peak		AM Peak PM Pea		Peak
	RFC	Q	RFC	Q	RFC	Q	RFC	Q
	2	2018	Base					
2 - Proposed Access N	0.00	0.0	0.00	0.0				
3 - R449 E	0.00	0.0	0.00	0.0	_			
	2020	Oper	ning Ye	ar				
2 - Proposed Access N	0.00	0.0	0.00	0.0	0.13	0.2	0.06	0.1
3 - R449 E	0.00	0.0	0.00	0.0	0.09	0.1	0.03	0.0
2025 Future Year								
2 - Proposed Access N	0.00	0.0	0.00	0.0	0.14	0.2	0.06	0.1
3 - R449 E	0.00	0.0	0.00	0.0	0.10	0.1	0.03	0.0

2035 Future Year

	With	out D)evelop	ment	With Developme			nent
Junction Approach	AM Peak PM Peak		Peak	AM Peak		PM Peak		
	RFC	Q	RFC	Q	RFC	Q	RFC	Q
2 - Proposed Access N	0.00	0.0	0.00	0.0	0.14	0.2	0.07	0.1
3 - R449 E	0.00	0.0	0.00	0.0	0.10	0.1	0.03	0.0

The results show that the proposed junction will have minimal impact on traffic flow once operational.

6. Mobility Management

Introduction

This section will present an overview of the Mobility Management Measures for the proposed development.

Objectives

The objectives of this section are as follows:

- To discourage private car as a means of travel to and from the development;
- To increase and facilitate the number of people choosing to walk, cycle or travel by public transport to the development;
- To work with KCC, the National Transport Authority and public transport providers to support and encourage staff and visitor up take; and,
- To develop an integrated and unified public transport, private vehicle, business fleet management and suppliers of commercial services to the development.

To achieve the above targets, measures have been proposed for the specific modes of transport. These are based on existing infrastructure and public transport systems. These measures are preliminary and will be further developed in the light of ongoing monitoring as the proposed development is occupied and information becomes available on future travel behaviour of residents and staff.

It is recommended that an Action Plan Coordinator is appointed, as someone who will take ownership of implementing the measures. **Table 10** overleaf presents a list of sample measures and actions.

Table 10 – Sample Mobility Management Measures and Actions

Walking						
Sample initiatives	Responsibility / Ownership	Typical timescale				
 Provision of details on how to access the site on foot. Details would include safe walking routes and location of the nearest bus stops / rail station. Promote walking events / lunchtime walks for employees. Annual Team Walking Events for employees e.g. Pedometer Challenge. 	The Action Plan Co-ordinator	Within 3 months of occupation.				
Cycling						
Sample initiatives	Responsibility / Ownership	Typical timescale				
Establish a Employee Bicycle User Group. Encourage establishment of a cycling club / society. Provision for cyclist equipment i.e. pump, allen keys, lights, puncture repairs. Display maps of local cycle network on notice boards.	The Action Plan Co-ordinator	Within 3 months of occupation.				

Public Transport		
Sample initiatives	Responsibility / Ownership	Typical timescale
Provision of public transport maps and timetables in prominent locations on site. Information should be kept up to date. This information could also be available online.	The Action Plan Co-ordinator	Within 3 months of occupation.
Provision of information to employees on savings that can be made by using Leap Card and details on where Leap Cards can be purchased.		
Re-advertise and promote the Tax saver monthly and annual commuter tickets for public transport to staff of the development.		
Include a one month trial ticket for public transport and timetable information.		
Display a local area map with public transport stops / route numbers marked.		
Publicise door-to-door multi modal journey planner website.		
Car Sharing		
Sample initiatives	Responsibility / Ownership	Typical timescale
Encouragement of employees and visitors of the development to use other modes of travel other than private car.	The Action Plan Co-ordinator	Within 3 months of occupation.
Where it is necessary for car use to travel to and from work, employees to be made aware of other people who are either within close proximity of their route into work.		
Hold a coffee morning / launch event for potential car sharers.		
Construction Phase		•
Sample initiatives	Responsibility / Ownership	Typical timescale
Provide a preliminary Construction Traffic Management Plan to provide detailed mitigation of construction traffic associated with the proposed development.	The Contractor / KCC Roads & Traffic Department	Agreed prior to construction.
Other Measures		
Sample initiatives	Responsibility / Ownership	Typical timescale
Employees to be informed of the health and fitness benefits of cycling and walking through posters and notice boards.	The Action Plan Co-ordinator	Within 3 months of occupation.
Include travel information in employee induction packs.		
Distribute travel maps, leaflets and timetables, ensuring consistent accessible formats, health information for walking routes, signposting to website / apps.		
Provide quarterly 'How to Travel' newsletter via email to employees.		
Example parking policies to ensure access to parking for those most in need, and for those who could use alternative modes.		

7. Construction Management Plan

This chapter of the report deals directly with the impacts of construction of the subject development. As with any construction project, the contractor will be required to prepare a comprehensive traffic management plan for the construction phase. The purpose of such a plan is to outline measures to manage the expected construction traffic activity during the construction period.

This chapter will provide an overview of the likely routing of construction vehicles, based on a most likely scenario of construction. It should be noted that the impacts of the construction will be temporary and it will be the contractor's responsibility to prepare a Construction Traffic Management Plan for approval in advance of any works.

Policy Guidance

Guidance for the temporary control of traffic at road works to facilitate the safety of the public during the works is provided below:

- Traffic Signs Manual Chapter 8 Temporary Traffic Measures and Sign Roadworks (2008);
- Addendum Transport Chapter 8, Temporary Traffic Measures and Sign Roadworks (2008); and
- Traffic Management Guidelines, Department of Transport (2003).

Likely Construction Programme / Phasing

The site as proposed would be expected to require some 16 - 18 months (approximately) to complete from occupation of the site.

Construction Route

It is recommended that construction traffic both accesses and departs the site from the M4 Junction 6 junction along the R449. This will ensure that construction vehicles travel the shortest distance from the motorway network, with minimal need to travel on local roads to access the site.

Parking

It is proposed that all construction vehicles will be accommodated within the subject site.

Mitigation Measures

A construction management plan will be developed and prepared by the contractor prior to the commencement of work on site. This will include any relevant mitigation measures to be implemented. For example, construction debris particularly site clearance, spoil removal and dirty water run off can have a significant impact on footpaths and roads adjoining a construction site if not adequately dealt with.

Hours of Operation

Site development and building works shall be carried out between the hours of operation suggested below. The typical hours of operation are as follows, to be confirmed with Kildare County Council:

- Monday to Friday: 08:00 19:00;
- Saturdays: 08:00 15:00; and
- Sundays or public holidays: No works.

Traffic Management Measures

Below is a list of the proposed traffic management measures to be adopted during the construction works. Please note that this is not an exhaustive list, and that it will be the appointed contractor's responsibility to prepare a detailed construction management plan.

- Warning signs / Advanced warning signs will be installed at appropriate locations in advance of the construction access locations;
- Construction and delivery vehicles will be instructed to use only the approved and agreed means of access; and movement of construction vehicles will be restricted to these designated routes;
- Appropriate vehicles will be used to minimise environmental impacts from transporting construction material, for example the use of dust covers on trucks carrying dust producing material;
- Speed limits of construction vehicles to be managed by appropriate signage, to promote low vehicular speeds within the site;
- Parking of site vehicles will be managed and will not be permitted on public road, unless proposed within a designated area that is subject to traffic management measures;
- A road sweeper will be employed to clean the public roads adjacent to the site of any residual debris that may be deposited on the public roads leading away from the construction works;
- On site wheel washing will be undertaken for construction trucks and vehicles to remove any debris prior to leaving the site, to remove any potential debris on the local roads;
- All vehicles will be suitably serviced and maintained to avoid any leaks or spillage of oil, petrol or diesel. Spill kits will be available on site. All scheduled maintenance carried out off-site will not be carried out on the public highway; and
- Safe and secure pedestrian facilities are to be provided where construction works obscure any existing
 pedestrian footways. Alternative pedestrian facilities will be provided in these instances, supported by
 physical barriers to segregate traffic and pedestrian movements, and to be identified by appropriate
 signage. Pedestrian facilities will cater for vulnerable users including mobility impaired persons.

The mitigation measures will therefore ensure that the presence of construction traffic will minimise any significant environmental degradation or safety concerns in the vicinity of the proposed works. Furthermore, it is in the interests of the construction programme that deliveries, particularly concrete deliveries are not unduly hampered by traffic congestion, and as a result continuous review of haulage routes, delivery timings and access arrangements will be undertaken as construction progresses to ensure smooth operation.

8. Summary and Conclusions

Summary

This report has been prepared for Kildare County Council to present the findings of a Traffic and Transport Assessment (TTA) undertaken to accompany the planning application for the development of land adjacent to the R449 in Celbridge, County Kildare.

The proposed development will be a Civic Amenity Centre, 1ha in size, serving northern County Kildare. Access to the proposed development will be via a new priority junction on the R449, with on-site parking provision.

The principal findings of the Assessment are summarised in the following paragraphs.

It has been demonstrated that the proposed development is compliant with relevant national, county and local transport policies, through the preparation of this document.

A review of the existing conditions in the vicinity of the proposed development confirms that the site is well situated, adjacent to the R449 and between the existing towns of Celbridge, Maynooth and Leixlip, as well as being near to West Dublin. It is situated just off the motorway system; with access onto the M4 approximately 300 metres to the northeast, via Junction 6. The nearest bus stop is approximately 1.1km from the site, located on the R405, with services into Celbridge and onwards to Dublin.

Accident data was obtained from the Road Safety Authority for the last 10 year period up to the end of 2014 which illustrates that four collisions have occurred within the study area, with one fatal collision. The data suggests that there are no existing safety issues which are likely to be exacerbated by the proposed development.

Access to the site for all modes will be provided via a priority junction on the R449. There will be a footway into the site provided and there will be provision for 7 car parking spaces.

In order to determine the level of trips generated by the proposed development, the Trip Rate Information Computer System (TRICS) database has been utilised. This identified that 116 two-way vehicular trips would occur in the AM peak, and 36 two-way vehicular trips would occur in the PM peak.

Traffic data was gathered at the M4 Junction 6 Five-arm roundabout and the R449 / R405 Three-arm roundabout. A percentage increase assessment was then undertaken for these junctions. Base scenarios and With Development scenarios were created and compared for the years of 2020, 2025, and 2035.

The results of the assessment confirm that there would not be an increase of 10% at either of the junctions. However, for robustness, a capacity assessment for the R449 / R405 Three-arm roundabout has been carried out, along with the R449 / Site Access Priority Junction.

The modelling results illustrate that the R449 / R405 Three-arm roundabout and the R449 / Site Access Priority Junction both operate within capacity in all modelled scenarios, and therefore no mitigation measures are required.

Conclusions

In conclusion, it is considered that the impact of the development is acceptable and therefore it is considered that Kildare County Council should be able to provide a positive recommendation for approval of the application.

Appendix A – Pre-application Scoping

From:	George Willoughby <gwilloug@kildarecoco.ie></gwilloug@kildarecoco.ie>
Sent:	14 September 2018 16:41
То:	Kennedy, Mary E.
Cc:	Siobhan O'Dwyer
Subject:	Re: Scope of transportation assessment - Kildare Civic Amenity Centre
Follow Up Flag:	Follow up
Flag Status:	Flagged

Mary,

I wish to confirm that the KCC Roads Section has no objection to the scope of the TTA as submitted.

Regards,

George

George Willoughby BA/BAI CEng MIEI Chartered Engineer Senior Executive Engineer Kildare County Council Roads, Transportation & Public Safety Department

From: "Kennedy, Mary E." <<u>MaryE.Kennedy@aecom.com</u>>
To: "gwilloughby@kildarecoco.ie" <<u>gwilloughby@kildarecoco.ie</u>>
Date: 17/08/2018 17:04
Subject: Scope of transportation assessment - Kildare Civic Amenity Centre Hi George,

Hope you are well.

By way of an introduction, I work with AECOM; we have been engaged by Donnachadh O'Brien Engineers to provide transportation assistance for a planning submission for a proposed Civic Amenity Centre at Celbridge, Co. Kildare, on land to the north of the R449 in Celbridge, Co. Kildare. In order to assess the impact of the proposed development, AECOM will prepare a Traffic and Transport Assessment (TTA).

The information set out below identifies the scope of the TTA proposed and we would be grateful for any queries or comments which you may have.

We understand that comprehensive pre-application consultation has been undertaken separate by Donnachadh O'Brien also.

Existing conditions

The site located to the north of the R449 is currently undeveloped and therefore is assumed not to generate any trips.

A review of the existing conditions, including pedestrian and cyclist facilities, public transport user facilities, the highway network and the development site will be set out. Public transport facilities including nearby bus stops and services will be reviewed and discussed. Any potential / committed infrastructure will also be set out. An initial review of accident data available from the Road Safety Authority's online map shows that four collisions took place between 2005 and 2014 on the R449 in the vicinity of the site. The findings of this review will be further set out in the TTA.

In order to establish existing traffic conditions, traffic count data has been sourced from publicly available previously submitted Traffic and Transport Assessments for separate developments in the vicinity of the site – namely, Intel development applications. Traffic data has been sourced for the following junctions, and has been growthed up to a 2018 baseline:

- M4 Junction 6 Five-arm Roundabout; and,
- R449 / R405 Three-arm Roundabout

Proposed Development

The development proposals comprise the provision of a Civic Amenity Centre of approximately 1 hectare on land off the R449 in Celbridge, Co. Kildare. The operational details of the development will be detailed within the TTA.

A total of 7 car parking spaces are proposed. Further detail on the car and cycle parking will be included in the TTA.

Access to the development is proposed from the southern boundary, via a new priority junction on the R449. The access proposals will be described within the TTA and a swept path assessment of the access and the internal layout for servicing vehicles and a fire tender will be carried out to ensure that vehicles can enter, manoeuvre within and exit the site without conflict.

Trip Generation

In order to establish the level of trips the development is likely to generate, an indepth review of the Trip Rate Information Computer System (TRICS) database version 7.5.2 has been carried out, as well as a high level review of data from peer sites in Dublin and Kildare. This identified that the greatest number of trips would occur during the off-peak when background traffic movements are lower.

The level of trips generated by the proposed development has been compared to the TII thresholds for junction assessments, i.e. '*Traffic to and from the development exceeds 10% of the traffic flow on the adjoining road.*'

Trip distribution and traffic growth will be set out in the TTA. The trip distribution is proposed to be developed from the population centres identified as being serviced by the proposed Civic Amenity Centre. This identifies that the majority of trips are generated to/from the east where the majority of the population catchment is located.

Development Impact

From our initial assessment, it is identified that the percentage impact does not trigger junction modelling when compared to TII thresholds, however, for robustness, a Junctions 9 model has been prepared for the site access priority junction and for the R449 / R405 Roundabout. These identify that these junctions operates within theoretical capacity through to future year 2035.

As mentioned, if you have any comments on the above scope, we would be delighted to discuss.

Kindest regards,

Mary Kennedy, BE CEng MIEI MCIHT Principal Consultant, Transportation, Ireland D +353-021-436-5006 MaryE.Kennedy@aecom.com

AECOM 1st Floor Montrose House Carrigaline Road Douglas, Cork, Ireland T +353-021-436-5006 aecom.com

Built to deliver a better world

LinkedIn Twitter Facebook Instagram

©2017 Time Inc. Used under license

Tá an ríomhphost seo príobháideach agus ní ceadmhach úsáid an ríomhphoist seo d'éinne ach don té ar seoladh chuige é. D'fhéadfadh go mbeadh eolas ann atá faoi phribhléid agus rúnda de réir an dlí. Munar duit an ríomhphost seo, déan teagmháil leis an seoltóir chomh luath agus is féidir. D'fhéadfadh nach iad tuairimí Chomhairle Contae Chill Dara na tuairimí atá curtha in iúl sa ríomhphost seo.

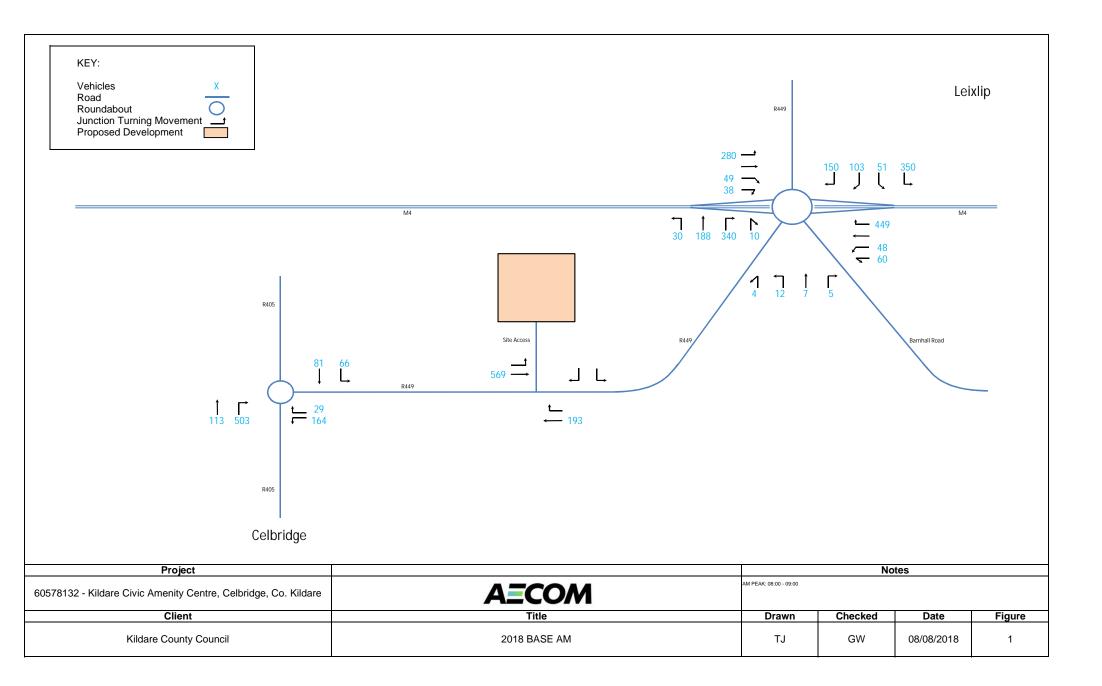
Déanann Comhairle Contae Chill Dara iarracht ríomhphoist a chosaint ó víris. Mar sin féin, moltar duit gach ríomhphost a scanadh, mar ní ghlacann an Chomhairle aon dliteanas i leith damáiste do do chórais.

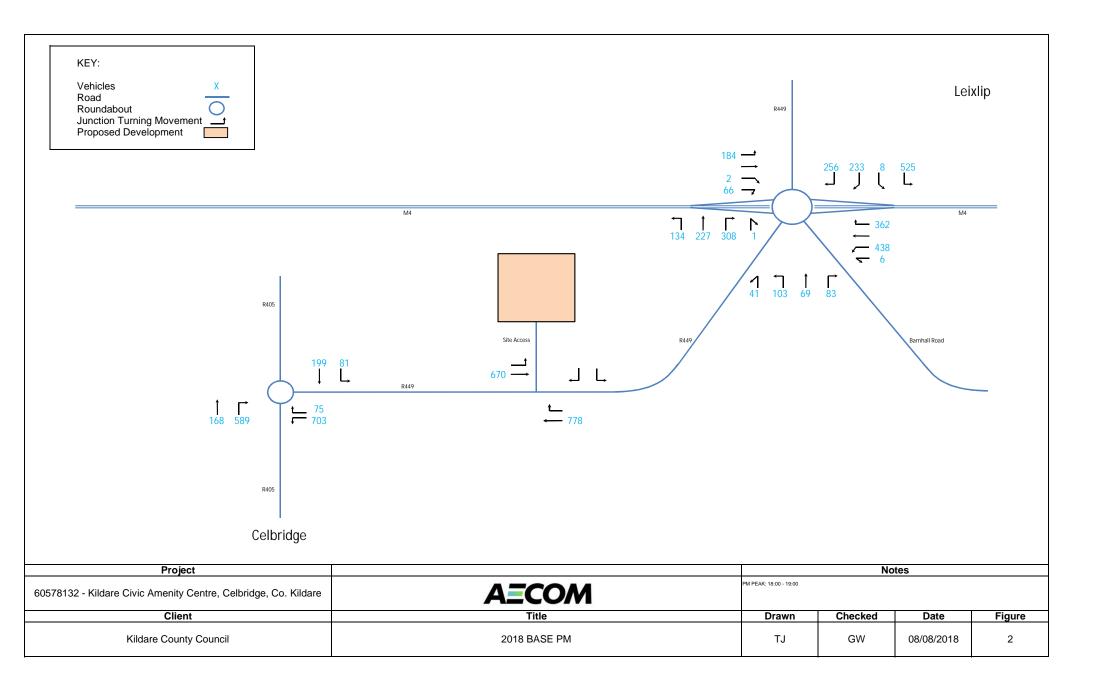
Le haghaidh eolas at do chearta príbháideachta agus at conas a bhainistímid sonraí pearsanta, logáil isteach at www.kildarecoco.ie/dataprotection

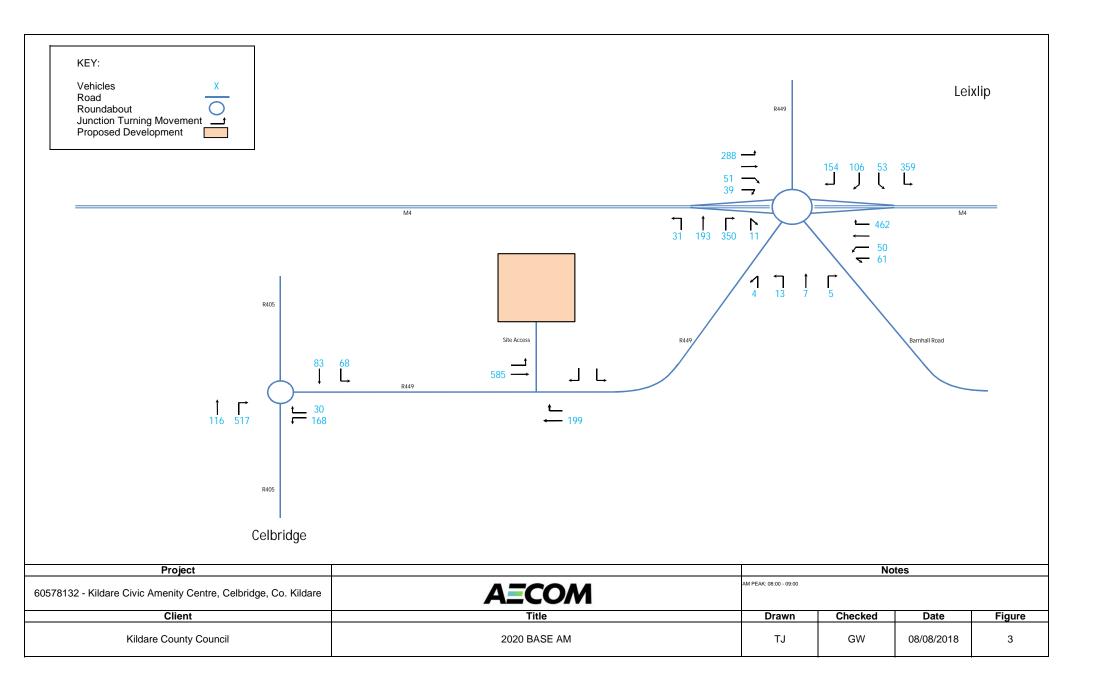
Chun do chuid sonraí pearsanta a nuashonrú cuir ríomhphost chugainn ag customercare@kildarecoco.ie Caithfidh tú deis a thógáil don Chomhairle cé thú féin a chinntiú trí cruthúnas céannachta agus/nó seoladh a sholáthar, sula ndéanaimid aon athruithe.

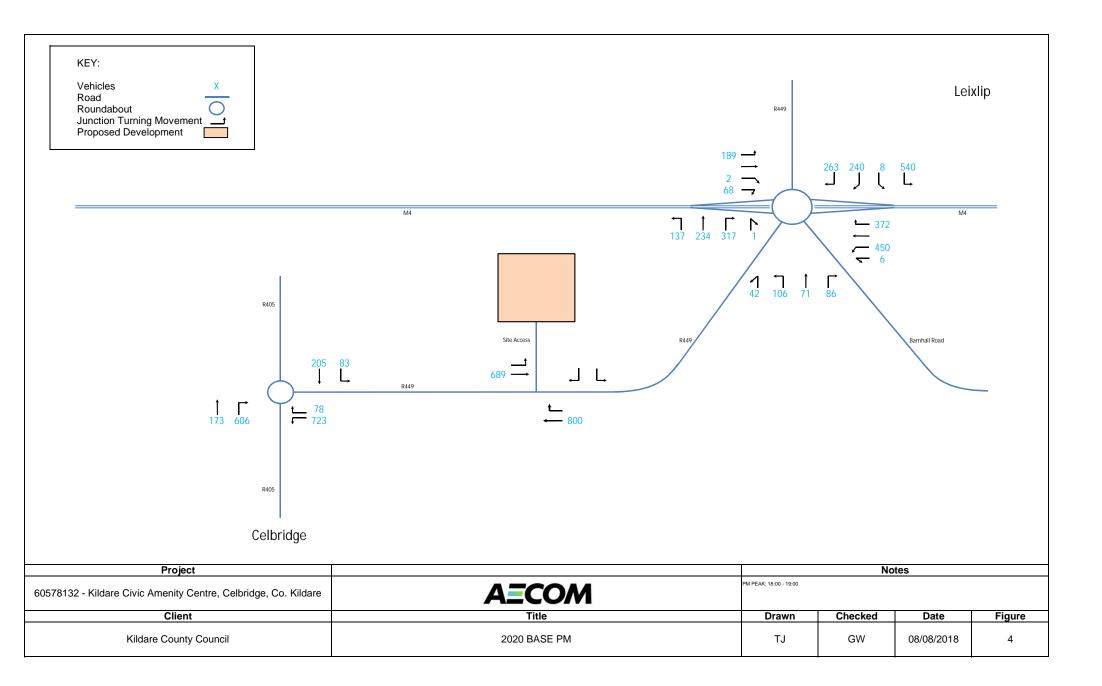
This message is intended only for the use of the person(s) to whom it is addressed. It may contain information which is privileged and confidential within the meaning of applicable law. If you are not the intended recipient, please contact the sender as soon as possible. The views expressed in this communication may not necessarily be the views held by Kildare County Council.

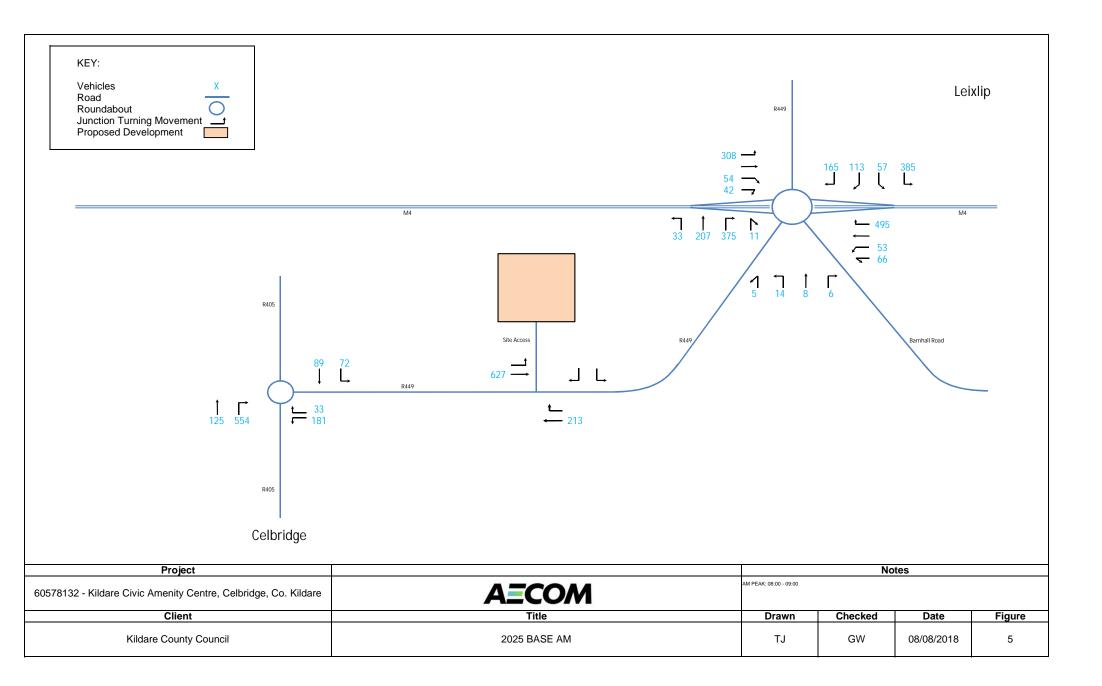
Kildare County Council endeavours to protect e-mails and their attachments from viruses.

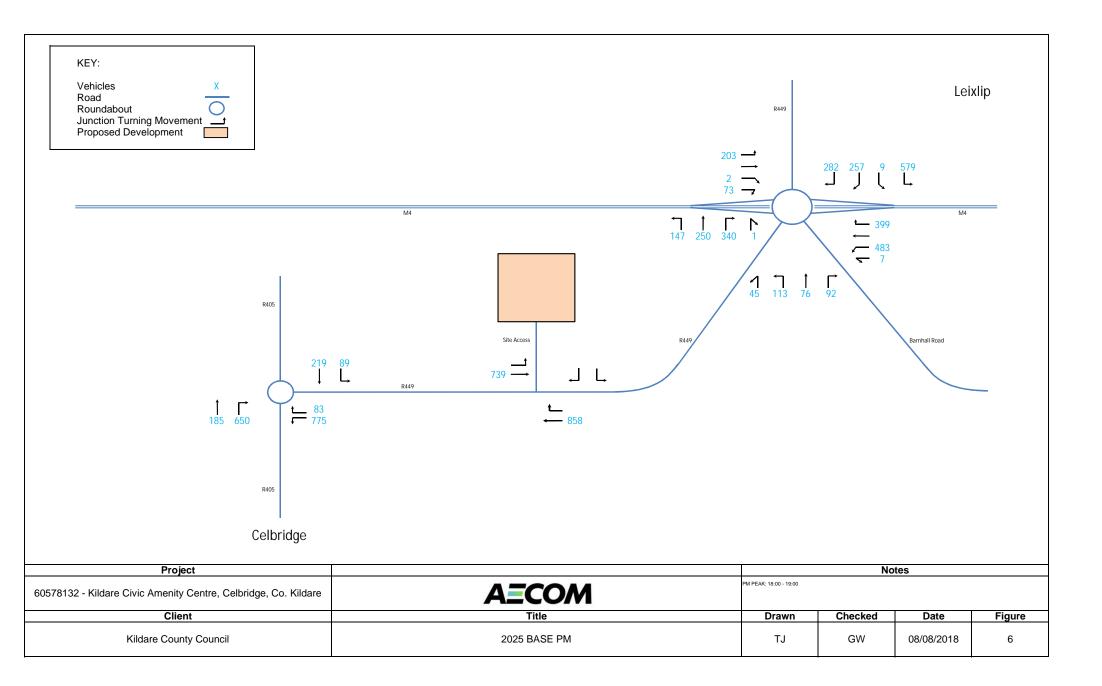

However, you are advised to scan all messages, as the council does not accept any liability for contamination or damage to your systems, however caused.

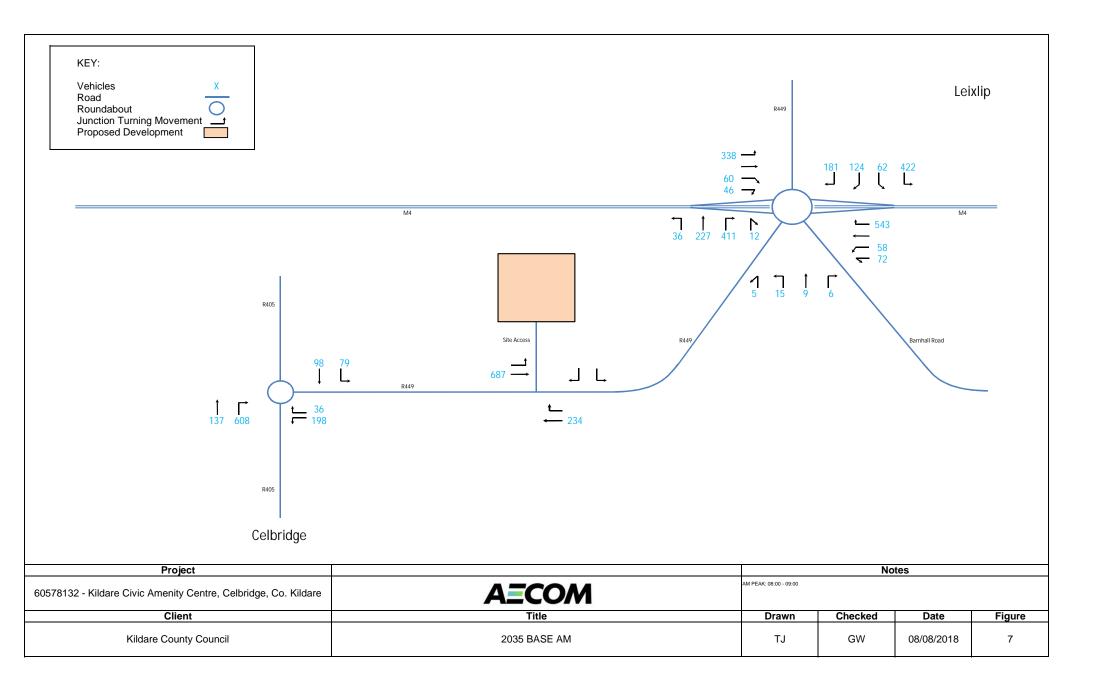

For information on your privacy rights and how we manage personal data, log on to www.kilarecoco.ie/dataprotection

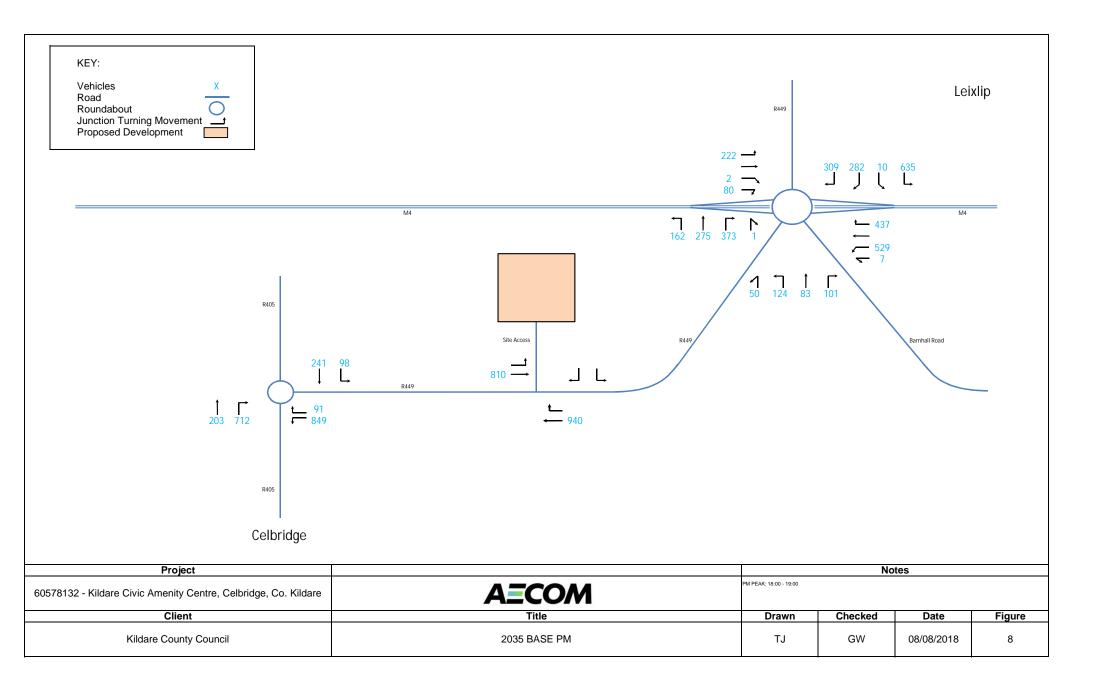

To update your personal information, email us at <u>customercare@kildarecoco.ie</u> You must enable the Council to verify your identity by providing proof of identity and/or address, before we make any changes.

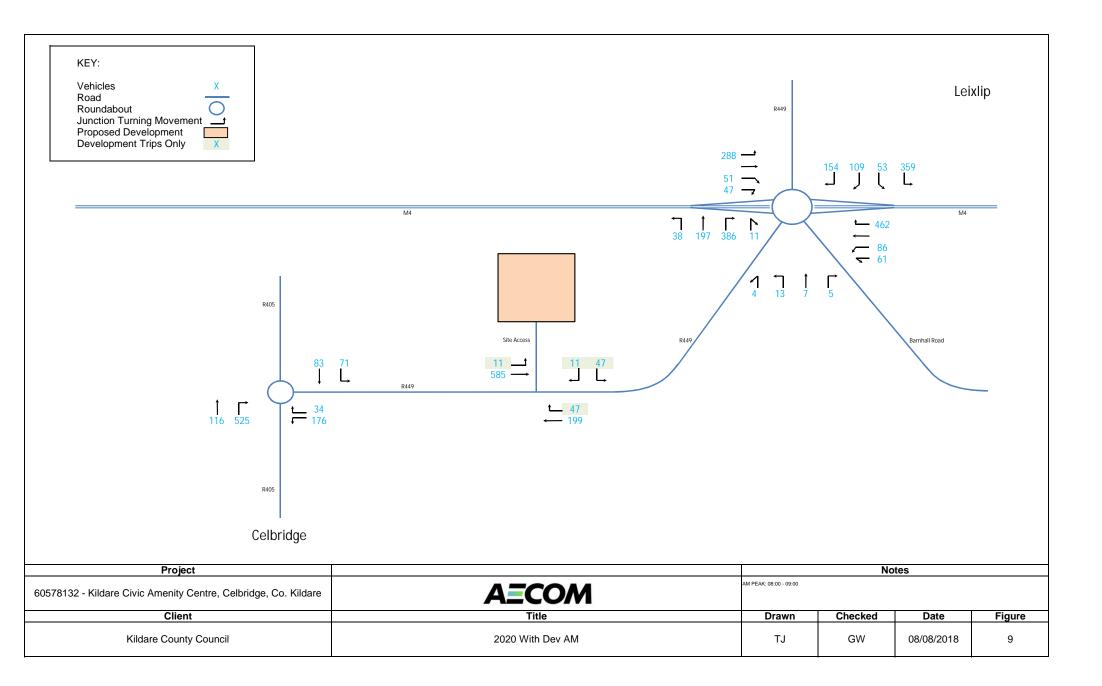

Our Website kildarecountycouncil.ie 'Follow' us on Twitter - 'Like' us on Facebook

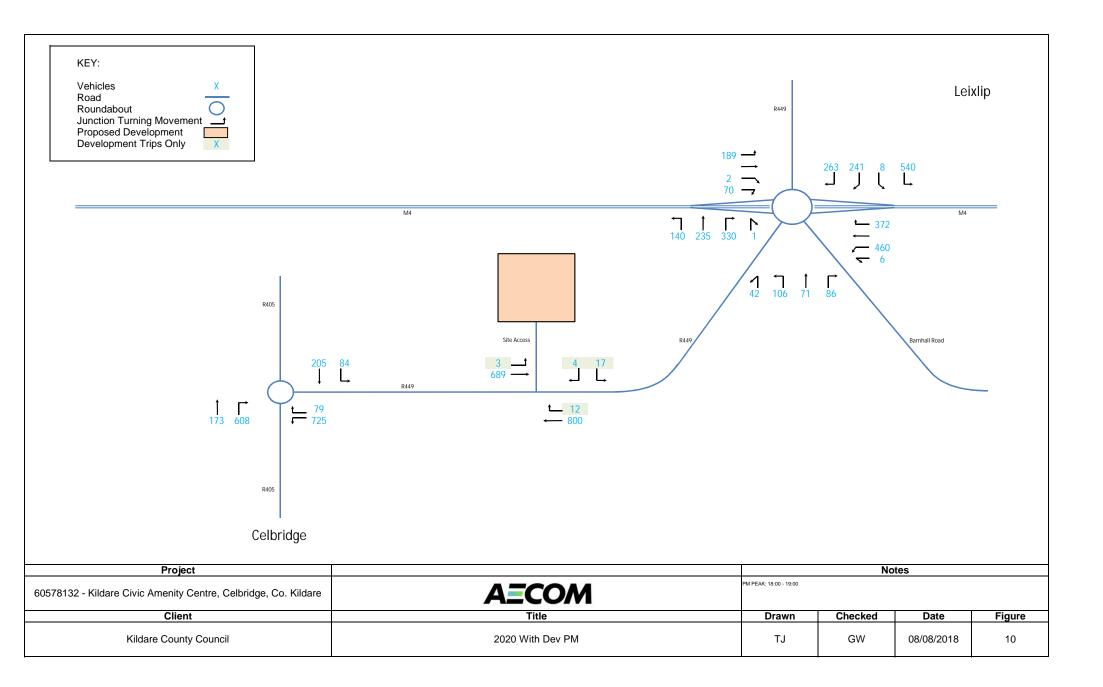

Appendix B – Flow Diagrams

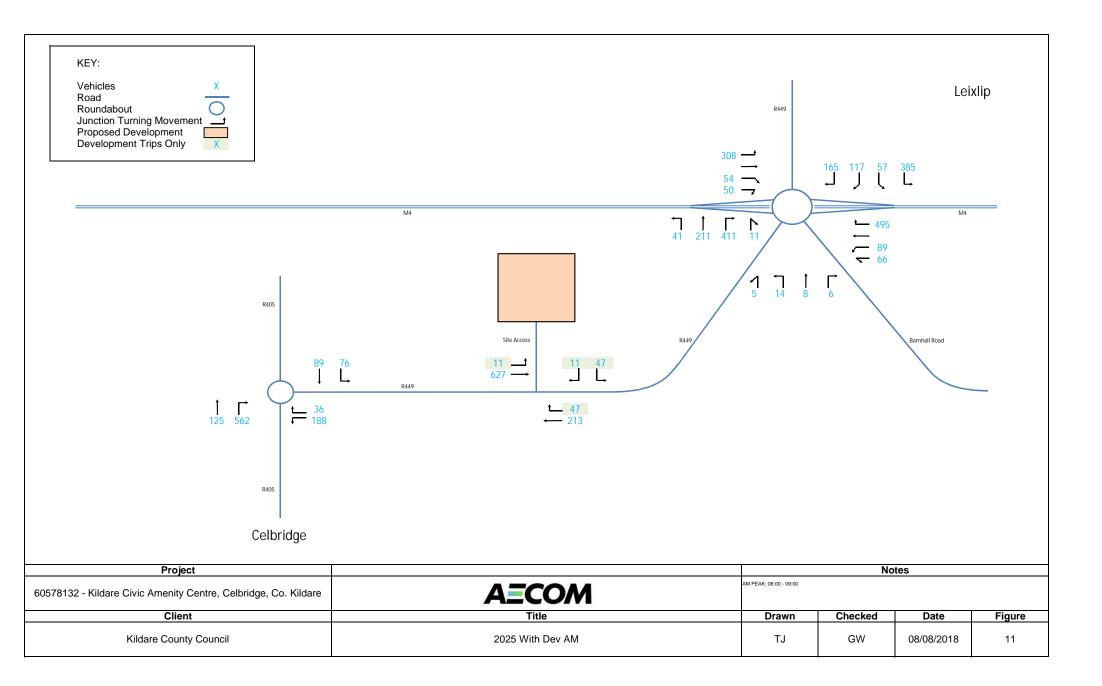


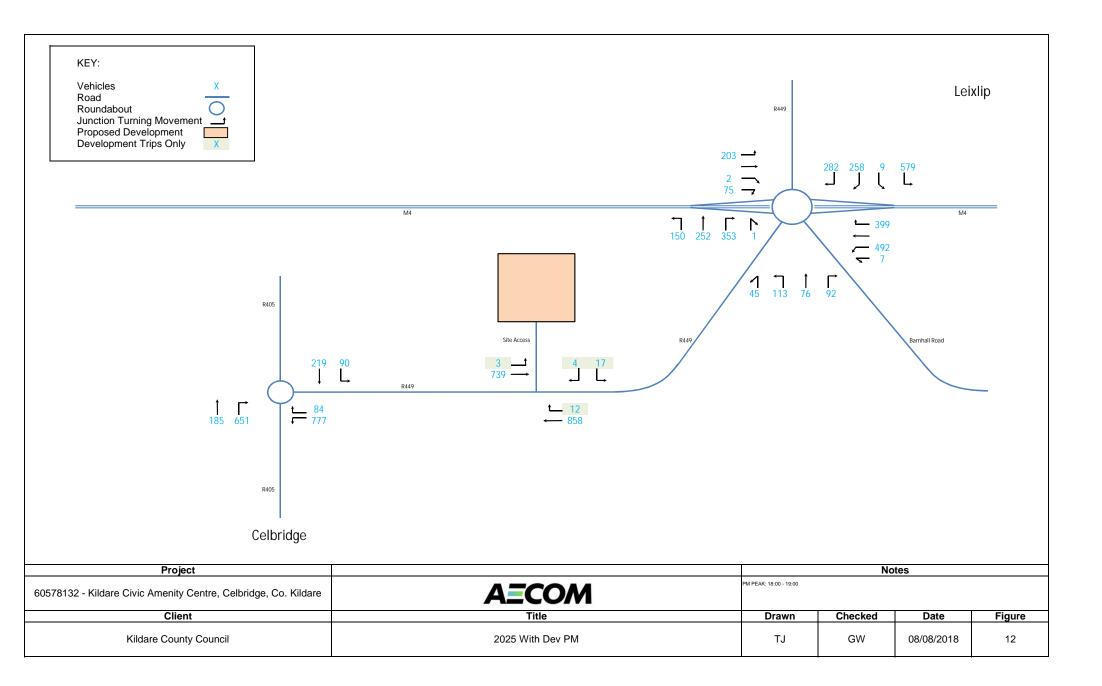


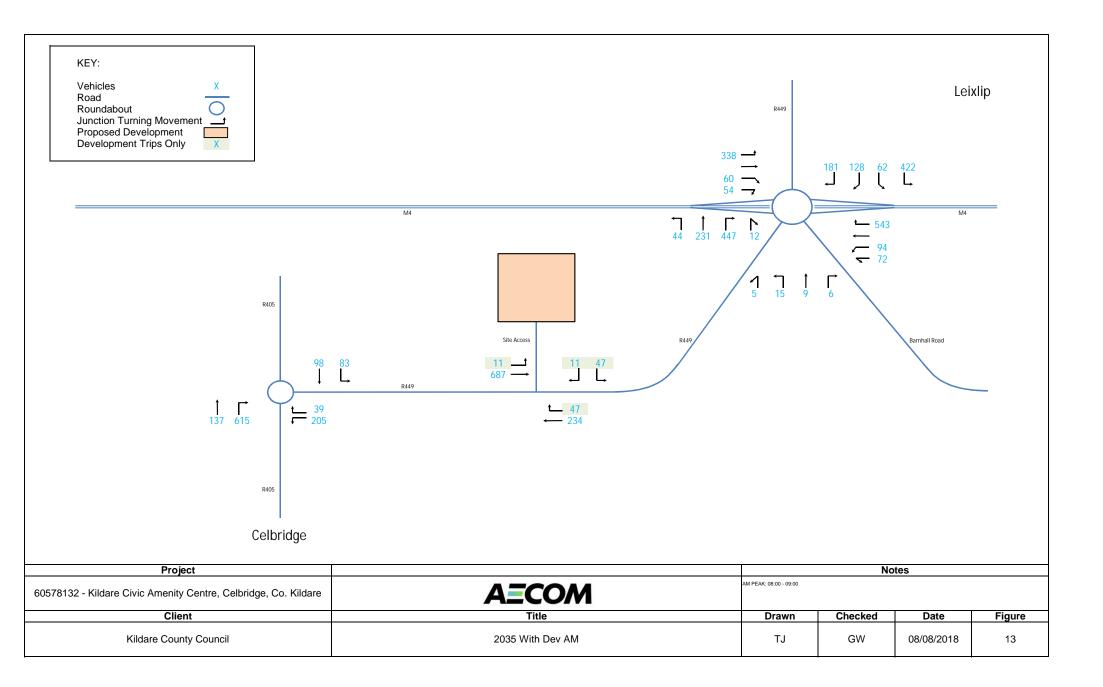


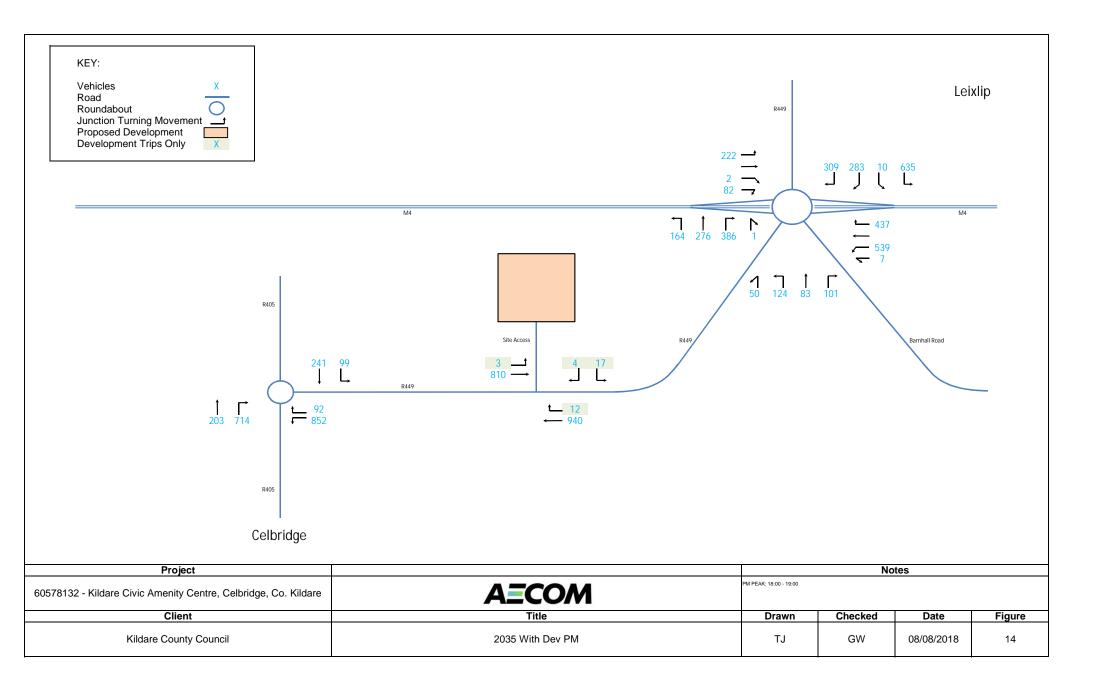












Appendix C – Trip Generation Technical Note

Proposed Celbridge Civic Amenity Centre

Trip Generation Technical Note

August 2018

Quality information Prepared by			Approved	lby		
Justin McHenry		Brian McMahon		Brian McMahon		
ston						
Revision date	Details	Authorized	Name	Position		
List						
PDF Required	Association /	Company Name				
	story Revision date	story Revision date Details List	story Revision date Details Authorized List	Checked by Approved Brian McMahon Brian McMahon story Revision date Details Authorized Name		

Prepared for: Kildare County Council/ Donnachadh O' Brien

Prepared by:

Justin McHenry Project Consultant T: +353 (0)1 238 3100 E: justin.mchenry@aecom.com

AECOM Ireland Limited 4th Floor Adelphi Plaza Georges Street Upper Co. Dublin Ireland

T: +353 1 238 3100 aecom.com

© 2018 AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Introd	duction	6
2.	Site D	Details	6
3.	Purpo	ose of Technical Note and Methodology	7
4.	Backg	pround to Analysis Sites	8
	4.1	Blackburn- TRICS Site Number: LC-12-A-04	8
	4.2	Cheshire- TRICS Site Number: CH-12-A-01	9
	4.3	Worchester - TRICS Site Number: WO-12-A-02	. 10
	4.4	Edinburgh- TRICS Site Number: EB-12-A-02	. 11
	4.5	Leeds- TRICS Site Number: WY-12-A-01	. 12
	4.6	Limerick- TRICS Site Number: LI-12-A-01	. 13
	4.7	Ballyogan	. 14
5.	TRICS	Trip Generation Site Statistics	. 15
	5.1	Blackburn- TRICS Site Number: LC-12-A-04	. 15
	5.2	Cheshire- TRICS Site Number: CH-12-A-01	. 17
	5.3	Worchester- TRICS Site Number: WO-12-A-02	. 19
	5.4	Edinburgh- TRICS Site Number: EB-12-A-02	. 21
	5.5	Leeds- TRICS Site Number: WY-12-A-01	. 23
	5.6	Limerick- TRICS Site Number: LI-12-A-01	. 25
	5.7	Ballyogan	. 27
6.	TRICS	and Site Analysis Results	. 28
7.	TRICS	Average AM and PM Trip Generation	. 29
8.	AM A	nd PM Peak Network Trip Generation	. 31
9.	Sumn	nary	. 31

Figures

Figure 1: Proposed Site Location	6
Figure 2: Catchment Area	
Figure 3: Blackburn Site Location	8
Figure 4: Cheshire Site Location	9
Figure 5: Worchester Site Location 1	0
Figure 6: Edinburgh Site Location1	1
Figure 7: Leeds Site Location	2
Figure 8: Limerick Site Location1	3
Figure 9: Ballyogan Site Location1	4
Figure 10: Blackburn: LC-12-A-04 Daily Trips Vehicle Composition	6
Figure 11: Cheshire: CH-12-A-01 Daily Trips Vehicle Composition	8
Figure 12: Worchester: WO-12-A-02 Daily Trips Vehicle Composition	20
Figure 13: Edinburgh: EB-12-A-02 Daily Trips Vehicle Composition	2
Figure 14: Leeds: WY-12-A-01 Daily Trips Vehicle Composition	24
Figure 15: Limerick: LI-12-A-01 Daily Trips Vehicle Composition	26
Figure 16: Total Average Hourly Trip Rates (Six TRICS Sites Accepting and Not Accepting	
Municipal Waste Combined)	32
Figure 17: Total Average Hourly Trip Rates (Only Sites Which Accept Municipal Waste) 3	2

Tables

Table 5.1: Blackburn: LC-12-A-04 Daily Trips	. 15
Table 5.2 Cheshire: CH-12-A-01 Daily Trips	. 17
Table 5.3: Worchester: WO-12-A-02 Daily Trips	
Table 5.4: Edinburgh: EB-12-A-02 Daily Trips	
Table 5.5: Leeds: WY-12-A-01 Daily Trips	
Table 5.6: Limerick: LI-12-A-01 Daily Trips	
Table 5.7: Ballyogan Trip Statistics	. 27
Table 6.1: Total Trip Rates and Daily Trips Comparison	. 28
Table 7.1: Average Daily AM and PM Trip Rates	. 29
Table 7.2: Average Daily AM and PM Trip Rates for Sites Which Accept Municipal Waste	. 30
Table 8.1: Proposed Trip Rates Per Hectare	. 31
Table 8.2: Proposed Trip Generations	. 31

1. Introduction

This Technical Note has been prepared to assess the potential trip generation for the proposed Celbridge Civic Amenity Centre. The proposed site is to be one hectare in size and accommodate between 5,000 and 7,500 tonnes of waste per year. The proposed site is located on the R449, a link road between the R405 in Celbridge and the R148 in Leixlip which passes via the M4 motorway interchange. The site is approximately 406m from the M4 Business Park and 312m from the M4 interchange, as illustrated by Figure 1.

Figure 1: Proposed Site Location

2. Site Details

The site is expected to deal with between 5,000 and 7,500 tonnes of waste per year. The main catchment areas are to include the local towns of: Kilcock, Maynooth, Leixlip, Celbridge and Clane, with a total combined population of 76,800, and the adjacent areas of Lucan and Palmerstown, with an approximate population of 100,000, as illustrated by Figure 2.

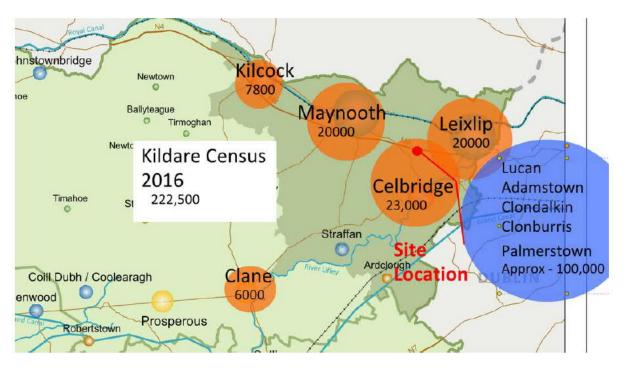


Figure 2: Catchment Area

The Civic Amenity Centre will cater for all waste streams including municipal waste. It is expected that municipal waste will account for some 58% of the waste stream at the Celbridge site. The site is approximately one hectare in size.

3. **Purpose of Technical Note and Methodology**

The following sections provide a Technical Note to assess the potential trip generation predicted by the Celbridge Civic Amenity Centre. The methodology used for the assessment of trip generation involved using the industry standard TRIC's database analysis. TRIC's was used in order to gain a range of comparable similar sites across Ireland and the United Kingdom. The results are presented in Sections 5, 6, 7 and 8 with a summary in Section 9.

Following appropriate filtering in terms of: site size, location and weekday counts, the TRIC's database presented six sites for comparison: Blackburn, Cheshire, Worchester, Edinburgh, Leeds and Limerick. Additionally, the daily traffic counts (daily total number of arrivals and departures) was analysed for a site in Ballyogan, within the Dun Laoghaire- Rathdown County Council district, for further comparison at local scale. A background to each site is presented in Section 4.

4. Background to Analysis Sites

4.1 Blackburn- TRICS Site Number: LC-12-A-04

This site is located in an area to the west of Blackburn Town Centre. It serves a population catchment of between 125,001 to 250,000 people within a 5 mile radius.

The site is approximately 0.41 hect and is located in a built-up area of industrial and retail development, with residential streets a bit further to the north and various town centre development further to the east. The site has 21 bays for waste stream loading. The site location is illustrated on Figure 3.

Figure 3: Blackburn Site Location

Materials disposed of at this site include the following:

- Aluminium foil, batteries, bicycles, books, bulky items, cans, car batteries, cardboard, ceramics, cooking oil, electrical goods, fluorescent light bulbs, fridges and freezers, furniture, garden waste, glass, hard plastics, hardcore and rubble, paint, paper, plastic bottles, printer cartridges, soil, fences and wood, scrap metal, shoes, sand, tetrapak cartons, textiles, tins, TV's and monitors, tyres, used engine oil, washing machines, dryers, dishwashers, white goods, timber, and yellow pages¹.
- The site disposes of municipal waste- requires permit².

¹ Source: TRICS Database

² Source: Blackburn with Darwen Council Website: <u>https://blackburn.gov.uk/Pages/Household-waste-and-recycling-centres-permit-terms-and-conditions.aspx</u>

4.2 Cheshire- TRICS Site Number: CH-12-A-01

This site is located in the west of Chester, within the Sealand Industrial Estate area. The site is approximately 0.3 hect with 16 bays for waste disposal. It serves a population catchment of between 125,001 to 250,000 people within a 5 mile radius.

Chester City Football Club is located next to the site, with various industrial developments nearby. There is open land to the south and further to the west. The site location is illustrated on Figure 4.

Figure 4: Cheshire Site Location

Materials disposed of at this site include the following:

- Electrical equipment, plastics, furniture, garden waste, paper, oil, rubble and soil, wood, textiles, batteries, small and large domestic appliances, metal, fluorescent tubes, cans, cardboard and books³.
- The site disposes of municipal waste⁴.

³ Source: TRICS Database

⁴ Source: Cheshire West and Chester Council Website: <u>https://www.cheshirewestandchester.gov.uk/residents/waste-and-recycling/find-a-recycling-centre/Chester%20Recycling%20Centre.aspx</u>

4.3 Worchester - TRICS Site Number: WO-12-A-02

Worchester Civic Amenity Site is located on Horsford Road, Worchester in a suburban area, outside of the Town Centre. It serves a population catchment of between 100,001 and 125,000 people within 5 mile radius and is a 0.52 hect site with 20 waste bays. The site location is illustrated on Figure 5.

Figure 5: Worchester Site Location

Materials disposed of at this site include the following:

- Asbestos, Small Batteries, Books, CDs and DVDs, Cans, Automobile Batteries, Cardboard, Chemicals, Textiles and Shoes, Engine Oil, Fluorescent Tubes, Foil, Fridges and Freezers, Garden Waste, Glass, Low Energy Bulbs, Mobile Phones, Paper, Plastics, Printer Cartridges, Scrap Metal, Soil and Rubble, Televisions, Tyres, Small Electrical Appliances, Wood, General Waste, Gas Bottles⁵.
- This site disposes of municipal waste⁶

⁵ Source: TRICS Database

⁶ Source: Worchesterhire Council Website: <u>http://www.worcestershire.gov.uk/letswasteless/directory_record/4/hallow_road</u>

4.4 Edinburgh- TRICS Site Number: EB-12-A-02

The site is on the edge of Edinburgh and is near the A900 which leads into central Edinburgh. It is approximately 0.62 hect, with 38 bays for waste traffic, and serves a catchment of between 250,001 to 500,000 people within a 5 mile radius. The site location is illustrated on Figure 6.

Figure 6: Edinburgh Site Location

Materials disposed of at this site include the following:

- Books, CD's, DVD's, Videos, Car Batteries, Cardboard, Engine Oil, Fridges, Glass, Green waste, Paper, rubble/Bricks, Scrap metal and Electronic Equipment⁷.
- The site disposes of municipal waste⁸.

⁷ Source: TRICS Database

⁸ Source: Edinburgh Council Website:

http://www.edinburgh.gov.uk/info/20001/bins_and_recycling/1611/household_waste_recycling_centre_rules_and_access/1 http://www.edinburgh.gov.uk/info/20001/bins_and_recycling/1610/household_waste_recycling_centres/1

4.5 Leeds- TRICS Site Number: WY-12-A-01

This site is located at the north-eastern edge of Leeds, with local routes heading towards various parts of the city and out into the countryside. The site is within an industrial area, with residential streets to the south and west and is approximately 0.73 hect in size. There are 18 waste loading bays and the site serves a population catchment of between 250,001 and 500,000 people within a 5 mile radius. The site location is illustrated on Figure 7.

Figure 7: Leeds Site Location

Materials disposed of at this site include the following:

- Paper, glass, clothing, books, and aluminium cans. No trade waste, chemicals or tyres are allowed⁹.
- The site does not accept municipal waste¹⁰.

⁹ Source: TRICS Database

¹⁰ Source: TRICS Database and Leeds Council Website:

https://www.leeds.gov.uk/residents/bins-and-recycling/recycling-sites/east-leeds-household-waste-sorting-site

4.6 Limerick- TRICS Site Number: LI-12-A-01

The site is located out of town, to the west of Limerick. The site is on the N69, which leads to Tralee to the south west of Limerick. The site has 46 bays for waste loading and serves a catchment of between 75,001 and 100,000 people within a 5 mile radius. The site location is illustrated on Figure 8.

Figure 8: Limerick Site Location

Materials disposed of at this site include the following:

- Batteries, Cardboard, Clothing/Footwear, Cans, Electrical Goods, Glass, Fluorescent Tubes/Bulbs, Garden Waste, Gas Cylinders, Paint, Plastics, Paper, Polystyrene, Oil Filters, Scrap Metal, Tetra Packs, Untreated Timber, Waste Oils and White Goods¹¹.
- This site does not accept municipal waste¹².

¹¹ Source: TRICS Database

¹² Source: Limerick Civic Centre Website: <u>http://limerickrecyclingcentres.ie/?page_id=13</u> Prepared for: Kildare County Council/ Donnachadh O' Brien

4.7 Ballyogan

Ballyogan Civic Amenity Site is located within close proximity to Leopardstown Valley. It is approximately 0.62hect and deals with 7,800 tonnes of waste per year. The Site location is illustrated on Figure 9.

Figure 9: Ballyogan Site Location

Statistics were not available for the site from TRICS and are therefore based on client survey findings from site. As such, figures are not available for hourly trips, instead daily trips are analysed.

Materials disposed of at this site include the following:

- Aluminium Foil Trays, Batteries, Beverage Cans, Beverage Cartons, Books, Car Batteries, Cardboard Cards, Christmas Trees, Clothes and Textiles, Electrical Waste, Fluorescent Tubes, Food Cans, Glass Bottles and Jars, Green Waste, Magazines, Metal, Mobile phone, Newspapers, Paints, Paper, Plastic Bottles, Plastic Film, Plastics other, Print Cartridges. Used Gas Cylinders, Waste Oil, White Polystyrene and Wood.
- This site does not accept municipal waste.

5. TRICS Trip Generation Site Statistics

5.1 Blackburn- TRICS Site Number: LC-12-A-04

The following provides a breakdown of the average daily trips at the Blackburn site during weekday operation. It illustrates that the AM peak, highlighted in blue, is between 11:00 and 12:00 with 144 trips (includes arrivals and departures). The PM peak is then between 12:00 and 13:00, highlighted in green, with 259 trips (includes arrivals and departures).

Time	Arr	Dep	Totals	% of
Period	785	782	1567	Daily Trips
06:00-07:00				
07:00-08:00	4	0	4	3
08:00-09:00	25	23	48	5
09:00-10:00	35	36	71	9
10:00-11:00	71	72	143	9
11:00-12:00	72	72	144	17
12:00-13:00	144	115	259	15
13:00-14:00	107	127	234	12
14:00-15:00	113	76	189	15
15:00-16:00	111	128	239	12
16:00-17:00	81	100	181	2
17:00-18:00	15	22	37	1
18:00-19:00	7	11	18	3
19:00-20:00				

Table 5.1: Blackburn: LC-12-A-04 Daily Trips

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is relatively low with only 5% of total daily trips. The trip generation during the PM network peak (18:00 - 19:00) is also extremely low with only 3% of total daily trips. The network peaks are highlighted in purple.

The following then also provides a breakdown of the vehicle composition for average daily trips at the Blackburn site during weekday operation. It illustrates private motor cars account for 96% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

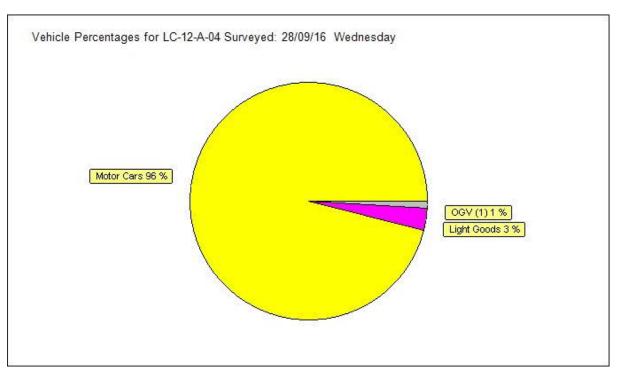


Figure 10: Blackburn: LC-12-A-04 Daily Trips Vehicle Composition

5.2 Cheshire- TRICS Site Number: CH-12-A-01

The following provides a breakdown of the average daily trips at the Cheshire site during weekday operation. It illustrates that the AM peak, highlighted in blue, is between 10:00 and 11:00 with 116 trips (includes arrivals and departures). The PM peak is then between 14:00 and 15:00, highlighted in green, with 129 trips (includes arrivals and departures).

Cheshire: CH-12-A Time	Arr	Dep	Totals	% of Daily
Period	408	409	817	Trips
06:00-07:00				
07:00-08:00	5	4	9	5
08:00-09:00	20	20	40	10
09:00-10:00	42	40	82	14
10:00-11:00	58	58	116	13
11:00-12:00	54	52	106	14
12:00-13:00	56	58	114	14
13:00-14:00	56	56	112	16
14:00-15:00	65	64	129	13
15:00-16:00	51	56	107	0
16:00-17:00	1	1	2	5
17:00-18:00				
18:00-19:00				

It must be noted that the trip generation during the AM network peak (08:00 – 09:00) is relatively low with only 10% of total daily trips. The trip generation during the PM network peak (18:00 – 19:00) is not available for this site as it exceeds the site's opening hours (closes at 17:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Cheshire site during weekday operation. It illustrates private motor cars account for 92% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

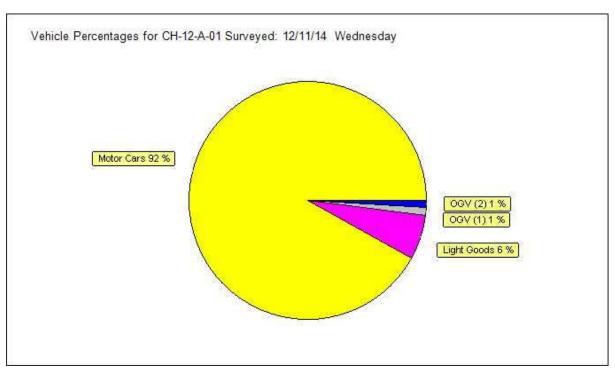


Figure 11: Cheshire: CH-12-A-01 Daily Trips Vehicle Composition

5.3 Worchester- TRICS Site Number: WO-12-A-02

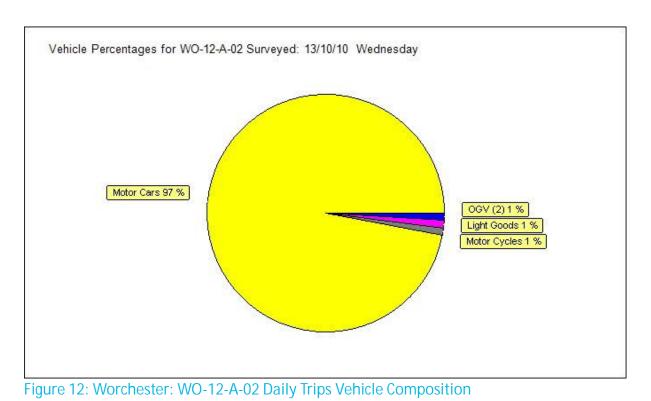

The following provides a breakdown of the average daily trips at the Worchester site during weekday operation. It illustrates that the AM peak is between 11:00 and 12:00, highlighted in blue, with 152 trips (includes arrivals and departures). The PM peak is then between 12:00 and 13:00, highlighted in green, with 58 trips (includes arrivals and departures).

Table 5.3: Wo	rchester: WO-12-A	-02 Daily	Trips			
	Time	Arr	Dep	Totals	% of Daily	
	Period	279	286	565	Trips	
	07:00-08:00					
	08:00-09:00	35	38	73	13	
	09:00-10:00	61	54	115	20	
	10:00-11:00	72	71	143	25	
	11:00-12:00	77	75	152	27	
	12:00-13:00	27	31	58	10	
	13:00-14:00	4	11	15	3	
	14:00-15:00	2	1	3	1	
	15:00-16:00	1	3	4	1	
	16:00-17:00	0	2	2	0	
	17:00-18:00					
	18.00-10.00					

18:00-19:00

It must be noted that the trip generation during the AM network peak (08:00 – 09:00) is relatively low with only 13% of total daily trips. The trip generation during the PM network peak (18:00 – 19:00) is not available for this site as it exceeds the site's opening hours (closes at 17:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Worchester site during weekday operation. It illustrates private motor cars account for 97% of daily trips and therefore the site does not add significant HGV pressure on existing road networks

Prepared for: Kildare County Council/ Donnachadh O' Brien

5.4 Edinburgh- TRICS Site Number: EB-12-A-02

The following provides a breakdown of the average daily trips at the Edinburgh site during weekday operation. It illustrates that the AM peak is between 10:00 and 11:00, highlighted in blue, with 73 trips (includes arrivals and departures). The PM peak is then between 14:00 and 15:00, highlighted in green, with 90 trips (includes arrivals and departures).

Time Deried		Dep	Totals	% of Daily Trips
Period	293 2	293	586	
06:00-07:00				
07:00-08:00	6	2	8	1
08:00-09:00	9	9	18	3
09:00-10:00	27	21	48	8
10:00-11:00	35	38	73	12
11:00-12:00	37	34	71	12
12:00-13:00	27	27	54	9
13:00-14:00	38	36	74	13
14:00-15:00	45	45	90	15
15:00-16:00	39	42	81	14
16:00-17:00	12	17	29	5
17:00-18:00	10	11	21	4
18:00-19:00	8	11	19	3
19:00-20:00				

Table 5.4:

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is extremely low with only 3% of total daily trips. The trip generation during the PM network peak (18:00 – 19:00) is also extremely low with only 3% of total daily trips. The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Edinburgh site during weekday operation. It illustrates private motor cars account for 77% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

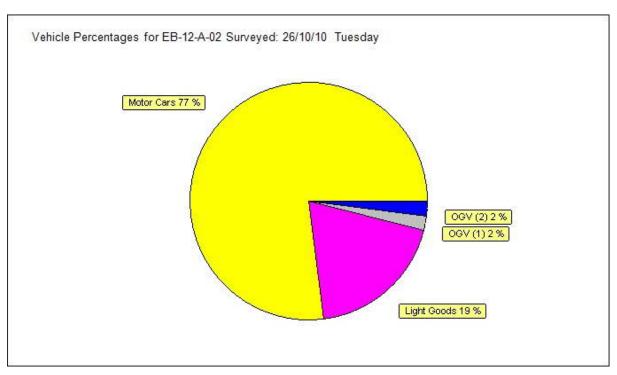


Figure 13: Edinburgh: EB-12-A-02 Daily Trips Vehicle Composition

5.5 Leeds- TRICS Site Number: WY-12-A-01

The following provides a breakdown of the average daily trips at the Leeds site during weekday operation. It illustrates that the AM peak is between 09:00 and 10:00, highlighted in blue, with 46 trips (includes arrivals and departures). The PM peak is then between 13:00 and 14:00, highlighted in green, with 48 trips (includes arrivals and departures).

Table 5.5: Leeds	Table 5.5: Leeds: WY-12-A-01 Daily Trips										
	Time	Arr	Dep	Totals	% of Daily						
	Period	173	176	349	Trips						
	06:00-07:00										
	07:00-08:00	10	8	18	5						
	08:00-09:00	9	9	18	5						
	09:00-10:00	23	23	46	13						
	10:00-11:00	15	16	31	9						
	11:00-12:00	22	20	42	12						
	12:00-13:00	23	23	46	13						
	13:00-14:00	24	24	48	14						
	14:00-15:00	15	15	30	9						
	15:00-16:00	22	24	46	13						
	16:00-17:00	10	12	22	6						
	17:00-18:00	0	2	2	1						
	18:00-19:00										

It must be noted that the trip generation during the AM network peak (08:00 – 09:00) is relatively low with only 5% of total daily trips. The trip generation during the PM network peak (18:00 – 19:00) is not available for this site as it exceeds the site's opening hours (closes at 18:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Leeds site during weekday operation. It illustrates private motor cars account for 87% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

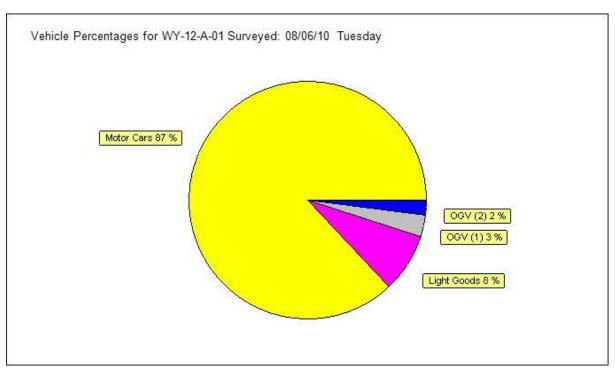


Figure 14: Leeds: WY-12-A-01 Daily Trips Vehicle Composition

5.6 Limerick- TRICS Site Number: LI-12-A-01

The following provides a breakdown of the average daily trips at the Limerick site during weekday operation. It illustrates that the AM peak is between 09:00 and 10:00, highlighted in blue, with 37 trips (includes arrivals and departures). The PM peak is then between 12:00 and 13:00, highlighted in green, with 26 trips (includes arrivals and departures).

Table 5.6:	Limerick: LI-12-A-(01 Daily 1	Trips				
	Time	Arr I	Dep	Totals	% of Daily Trips		
	Period	98	98	196			
	07:00-08:00						
	08:00-09:00						
	09:00-10:00	19	18	37	19		
	10:00-11:00	14	13	27	14		
	11:00-12:00	16	15	31	16		
	12:00-13:00	14	12	26	13		
	13:00-14:00	9	10	19	10		
	14:00-15:00	7	7	14	7		
	15:00-16:00	8	4	12	6		
	16:00-17:00	11	14	25	13		
	17:00-18:00	0	5	5	3		
	10.00.10.00						

18:00-19:00

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is not available for the site as it is outside the site's opening hours (opens at 09:00). The trip generation during the PM network peak (18:00 - 19:00) is also not available for this site as it exceeds the site's opening hours (closes at 18:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Limerick site during weekday operation. It illustrates private motor cars account for 87% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

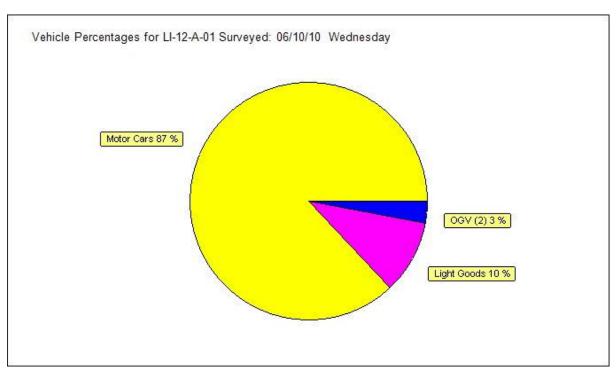


Figure 15: Limerick: LI-12-A-01 Daily Trips Vehicle Composition

5.7 Ballyogan

Statistics were not available for the site at Ballyogan from TRICs and are therefore based on the operator's survey findings from site. As such, statistics are not available for hourly trips, instead daily trips are analysed. This is illustrated on Table 5.7.

Table 5.7: Ballyogan Trip Statistics

Details	Statistic
Total Daily Trip for Weekdays	50,967
Operational Days	215
Average Arrivals to site Per Operational Weekday	237.06
Average Departures from site Per Operational Weekday	237.06
<u>Total Trips to and from site per</u> <u>Weekday</u>	<u>474</u>

These statistics are incorporated into an analysis in Section 6 to illustrate how Ballyogan, a site within the Greater Dublin area, compares to the average civic amenity centre daily trips.

6. TRICS and Site Analysis Results

Table 6.1 provides a calculated, ranked, comparison table for each of the sites average daily trip rate and trip total generation statistics. Daily trip statistics where used as the basis for comparison as this provided the best opportunity to compare available traffic statistics with a local site: Ballyogan.

Table 6.1: Total Trip Rates and Daily Trips Comparison

Rank	Site Ref	Mun. Waste	Description	Location	Area	Arrivals (Daily Trip Rate)	Depart (Daily Trip Rate)	Total Trip Daily Rate	Arr	Dep	Total Daily Trip Generation
1	LC- 12-	Yes- Permit	RECYCLING CENTRE	BLACKB URN	0.41	1790.24 4	1770.7 32	3561.0	734	726	1460
	A-04										
2	CH- 12-	Yes	RECYCLING CENTRE	CHESHIR E	0.3	1276.66 7	1283.3 33	2560.0	383	385	768
_	A-01										
3	WO- 12-	Yes	CIVIC AMENITY	WORCES TER	0.21	1161.90 5	1180.9 52	2342.9	244	248	492
	A-02										
4	EB- 12-	Yes	RECYCLING CENTRE	EDINBUR GH	0.62	419.355	419.35 5	838.7	260	260	520
	A-02										
5	BALL Y- OGA N	No	CIVIC AMENITY	DUN LAOGHA IRE	0.62	382.26	382.26	764.52	237	237	474
6	WY- 12-A- 01	No	CIVIC AMENITY SITE	LEEDS	0.73	210.959	215.06 8	426.0	154	157	311
7	LI- 12-A- 01	No	RECYCLING CENTRE	NEAR LIMERIC K	0.52	188.462	178.84 6	367.3	98	93	191

Based on the findings in Table 6.1, the four sites which accept municipal waste are ranked higher than the three sites that do not accept municipal waste. Therefore to get a robust and worst case trip generation the Leeds and Limerick sites should be removed from the list of sites.

7. TRICS Average AM and PM Trip Generation

Table 7.1 presents a calculated AM and PM trip rate of arrivals and departures throughout an average weekday for all six TRICS sites.

Time Range	Days	Ave. Area	Arrival Trip Rate	No. Days	Ave. Area	Departures Trip Rate	No. Days	Ave. Area	Total Trip Rate
06:00-07:00									
07:00-08:00	4	0.51	12.136	4	0.51	6.796	4	0.51	18.932
08:00-09:00	6	0.47	35.125	6	0.47	35.484	6	0.47	70.609
09:00-10:00	6	0.47	74.194	6	0.47	68.817	6	0.47	143.011
10:00-11:00	6	0.47	94.982	6	0.47	96.057	6	0.47	191.039
11:00-12:00	6	0.47	99.642	6	0.47	96.057	6	0.47	195.699
12:00-13:00	6	0.47	104.301	6	0.47	95.341	6	0.47	199.642
13:00-14:00	6	0.47	85.305	6	0.47	94.624	6	0.47	179.929
14:00-15:00	6	0.47	88.53	6	0.47	74.552	6	0.47	163.082
15:00-16:00	6	0.47	83.154	6	0.47	92.115	6	0.47	175.269
16:00-17:00	6	0.47	41.219	6	0.47	52.33	6	0.47	93.549
17:00-18:00	5	0.5	10.04	5	0.5	16.064	5	0.5	26.104
18:00-19:00	2	0.52	14.563	2	0.52	21.359	2	0.52	35.922
19:00-20:00									
Daily Trip Ra	tes:		743.191			749.596			1492.787

Table 7.1: Average Daily AM and PM Trip Rates (One Hectare Calculation Factor)

In order to then provide a robust daily trip generation assessment for the Celbridge site, an assessment is also provided in Table 7.2 that is based only on sites which accept municipal waste: Blackburn, Cheshire, Worchester, and Edinburgh. This ensures that the assessment presents findings most comparable to the average daily trip generation Celbridge can expect due to its accepted waste streams.

Time Range	Days	Ave. Area	Arrival Trip Rate	No. Days	Ave. Area	Departures Trip Rate	No. Days	Ave. Area	Total Trip Rate
06:00-07:00									
07:00-08:00	3	0.44	11.278	3	0.44	4.511	3	0.44	15.789
08:00-09:00	4	0.38	57.792	4	0.38	58.442	4	0.38	116.234
09:00-10:00	4	0.38	107.143	4	0.38	98.052	4	0.38	205.195
10:00-11:00	4	0.38	153.247	4	0.38	155.195	4	0.38	308.442
11:00-12:00	4	0.38	155.844	4	0.38	151.299	4	0.38	307.143
12:00-13:00	4	0.38	164.935	4	0.38	150	4	0.38	314.935
13:00-14:00	4	0.38	133.117	4	0.38	149.351	4	0.38	282.468
14:00-15:00	4	0.38	146.104	4	0.38	120.779	4	0.38	266.883
15:00-16:00	4	0.38	131.169	4	0.38	148.701	4	0.38	279.87
16:00-17:00	4	0.38	61.039	4	0.38	77.922	4	0.38	138.961
17:00-18:00	3	0.41	20.161	3	0.41	26.613	3	0.41	46.774
18:00-19:00	2	0.52	14.563	2	0.52	21.359	2	0.52	35.922
19:00-20:00									
Daily Trip Rates:			1156.392			1162.224			2318.616

Table 7.2: Average Daily AM and PM Trip Rates for Sites Which Accept Municipal Waste (One Hectare Calculation Factor)

8. AM And PM Peak Network Trip Generation

The latest version of the Trip Rate Information Computer System (TRICS v 7.5.2) was used to calculate the quantum of vehicle trips likely to be generated by a development of the scale and type proposed – 1 hectare. The full outputs from the TRICS analysis is shown in Table 7.2, whilst the trip rates and the resulting trip generations for the peak periods are illustrated in Tables 8.1 and 8.2 below.

Table 8.1: Proposed Trip Rates Per Hectare

Development	TRICs Land	AM Peak Hour	(08:00 – 09:00)	·	
	Use	Arrivals	Departures	Arrivals	Departures
Civic Amenity Centre	07 V - Library	57.792	58.442	14.563	21.359

Table 8.2: Proposed Trip Generations

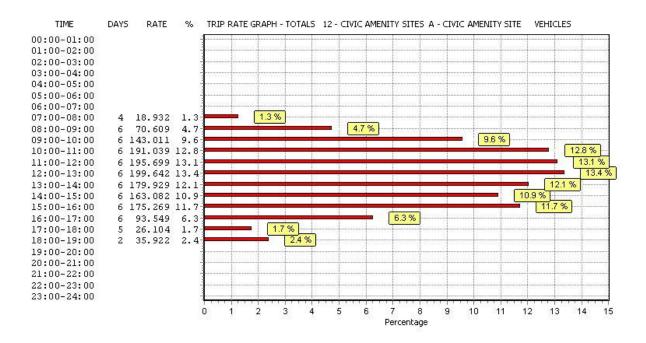

Development	Development Size		eak Hour) – 09:00)	PM Peak Hour (18:00 – 19:00)		
	Size	Arrivals	Departures	Arrivals	Departures	
Civic Amenity Centre	1 hectare	58	58	15	21	
Peak Hour To		116	36			

Table 8.2 demonstrates that the anticipated trip generations associated with the development are 116 and 36 trips respectively during the morning (08:00 - 09:00) and evening (18:00 - 19:00) peak hour periods.

9. Summary

Summarising the above analysis, a number of key trends have become apparent that will provide useful technical information in relation to the Celbridge Civic Amenity Centre proposal.

To begin with, it is of significant note that average trends indicate that the AM peak for civic amenity sites (accepting and not accepting municipal waste combined) is between 11:00 and 12:00, as highlighted in blue on Table 7.1, with a trip rate of 195.70. The PM peak of between 12:00 and 13:00, as highlighted in green in Table 7.1, has a trip rate of 199.64. These development peaks are outside of Celbridge's network AM peak (08:00 -09:00) and PM peak (18:00 – 19:00) hours. Figure 16 plots the combined total hourly trip rates for the six combined TRICS sites to illustrate development trip generation.

Figure 16: Total Average Hourly Trip Rates (Six TRICS Sites Accepting and Not Accepting Municipal Waste Combined)

Assessing only sites which also accept municipal waste, Table 7.2, also demonstrates that on average the AM development peak, between 10:00 and 11:00, and the PM development peak, between 12:00 and 13:00, falls outside the proposed site's network peaks (AM: 08:00 – 09:00 and PM: 18:00 – 19:00). Again, Figure 17 plots the combined total hourly trip rates for the four sites which accept municipal waste in order to demonstrate the impact on trip generation flows.

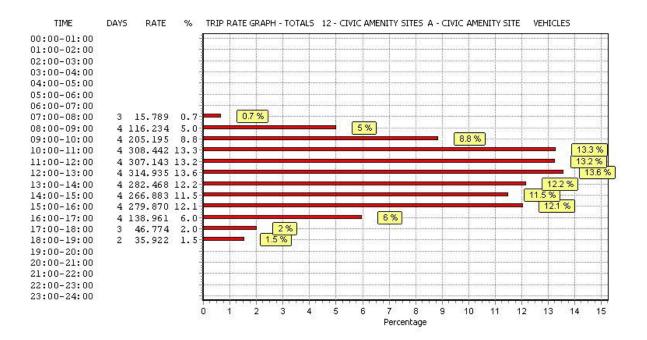


Figure 17: Total Average Hourly Trip Rates (Only Sites Which Accept Municipal Waste)

These findings together indicate that network flows should not see significant disruption due to traffic streams going to and from the proposed Civic Amenity Centre because development peaks are outside of the network peak hours.

Finally, the analysis has also highlighted that private motors are the predominant trip takers to civic amenity centres, with 89% of the modal split, and therefore the site will not significantly increase HGV presence on the road network.

Justin McHenry Project Consultant T:+353 (0)1 238 3100 E:justin.mchenry@aecom.com

AECOM Ireland Limited 4th Floor Adelphi Plaza Georges Street Upper Co. Dublin Ireland

T: +353 1 238 3100 aecom.com

Appendix D – Junction Modelling Results

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.0.1.4646 [] © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL:

Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

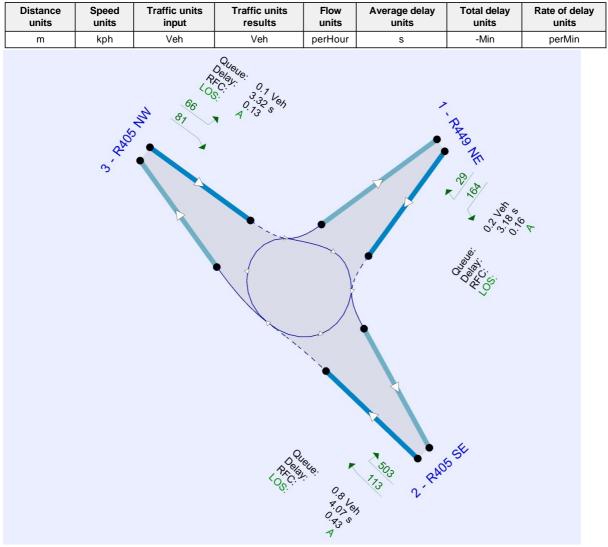
Filename: 180810_R449 R405 Rbt_V1.j9 Path: \\eu.aecomnet.com\EMIA\UKI\IEDBL2\Jobs\PR-334308_Kildare_Civic_amenity_transpor\400_Technical\431_Transport\Modelling Report generation date: 15/08/2018 13:39:55

»Existing Layout - 2018, AM
»Existing Layout - 2018, PM
»Existing Layout - 2020, AM
»Existing Layout - 2020, PM
»Existing Layout - 2020 With Dev, AM
»Existing Layout - 2025, AM
»Existing Layout - 2025, PM
»Existing Layout - 2025 With Dev, AM
»Existing Layout - 2025 With Dev, PM
»Existing Layout - 2035, AM
»Existing Layout - 2035, PM
»Existing Layout - 2035 With Dev, AM

Summary of junction performance

				٨N	1					PN	1	
	Queue (Veh)	Delay (s)	RFC	LOS	Junction Delay (s)	Network Residual Capacity	Queue (Veh)	Delay (s)	RFC	LOS	Junction Delay (s)	Network Residual Capacity
						Existing La	yout - 2	018				
1 - R449 NE	0.2	3.18	0.16	Α		115 %	2.1	8.80	0.68	Α		32 %
2 - R405 SE	0.8	4.07	0.43	Α	3.78		1.2	5.18	0.55	А	6.57	
3 - R405 NW	0.1	3.32	0.13	А		[2 - R405 SE]	0.4	4.12	0.26	Α		[1 - R449 NE]
						Existing La	yout - 2	020				
1 - R449 NE	0.2	3.20	0.16	Α		109 %	2.3	9.48	0.70	Α		28 %
2 - R405 SE	0.8	4.16	0.45	А	3.85		1.3	5.38	0.56	А	6.96	
3 - R405 NW	0.2	3.37	0.13	А		[2 - R405 SE]	0.4	4.22	0.27	Α		[1 - R449 NE]
					Exis	sting Layout	- 2020 V	Vith De	€V			
1 - R449 NE	0.2	3.24	0.17	Α		106 %	2.3	9.56	0.70	Α		28 %
2 - R405 SE	0.8	4.22	0.45	Α	3.89		1.3	5.40	0.56	А	7.01	
3 - R405 NW	0.2	3.40	0.14	А		[2 - R405 SE]	0.4	4.23	0.27	Α		[1 - R449 NE]
						Existing La	yout - 2	025				
1 - R449 NE	0.2	3.26	0.18	A		95 %	3.0	11.68	0.75	В		20 %
2 - R405 SE	0.9	4.43	0.48	А	4.05		1.5	5.96	0.60	А	8.19	
3 - R405 NW	0.2	3.49	0.15	А		[2 - R405 SE]	0.4	4.51	0.30	А		[1 - R449 NE]
					Exis	sting Layout	- 2025 V	Vith De	€V			
1 - R449 NE	0.2	3.29	0.18	Α		92 %	3.0	11.81	0.76	В		20 %
2 - R405 SE	0.9	4.49	0.49	А	4.10		1.5	5.98	0.60	А	8.26	
3 - R405 NW	0.2	3.53	0.15	А		[2 - R405 SE]	0.4	4.52	0.30	Α		[1 - R449 NE]
						Existing La	yout - 2	035				
1 - R449 NE	0.2	3.35	0.19	A		77 %	4.8	17.55	0.84	С		9 %
2 - R405 SE	1.1	4.88	0.53	А	4.39		2.0	7.06	0.66	А	11.23	
3 - R405 NW	0.2	3.70	0.17	А		[2 - R405 SE]	0.5	5.00	0.34	А		[1 - R449 NE]
					Exis	sting Layout	- 2035 V	Vith De	€V			
1 - R449 NE	0.3	3.38	0.20	Α		75 %	5.0	17.92	0.84	С		9 %
2 - R405 SE	1.1	4.95	0.53	Α	4.44		2.0	7.10	0.67	А	11.42	
3 - R405 NW	0.2	3.73	0.17	Α		[2 - R405 SE]	0.5	5.02	0.34	А		[1 - R449 NE]

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Junction LOS and Junction Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.


File summary

File Description

Title R449/R405 Three-Arm Roundat		
Location	Co. Kildare, Ireland	
Site number		
Date	10/08/2018	
Version		
Status	Existing	
Identifier		
Client		
Jobnumber		
Enumerator	EU\theodore.jones	
Description		

Units

The junction diagram reflects the last run of Junctions.

Analysis Options

Calculate Queue	Calculate residual	Residual capacity	RFC	Average Delay	Queue threshold
Percentiles	capacity	criteria type	Threshold	threshold (s)	(PCU)
	✓	Delay	0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2018	AM	ONE HOUR	07:45	09:15	15
D2	2018	PM	ONE HOUR	17:45	19:15	15
D3	2020	AM	ONE HOUR	07:45	09:15	15
D4	2020	PM	ONE HOUR	17:45	19:15	15
D5	2020 With Dev	AM	ONE HOUR	07:45	09:15	15
D6	2020 With Dev	PM	ONE HOUR	17:45	19:15	15
D7	2025	AM	ONE HOUR	07:45	09:15	15
D8	2025	PM	ONE HOUR	17:45	19:15	15
D9	2025 With Dev	AM	ONE HOUR	07:45	09:15	15
D10	2025 With Dev	PM	ONE HOUR	17:45	19:15	15
D11	2035	AM	ONE HOUR	07:45	09:15	15
D12	2035	PM	ONE HOUR	17:45	19:15	15
D13	2035 With Dev	AM	ONE HOUR	07:45	09:15	15
D14	2035 With Dev	PM	ONE HOUR	17:45	19:15	15

Analysis Set Details

ID	Name	Network flow scaling factor (%)
A1	Existing Layout	100.000

Existing Layout - 2018, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	3.78	А

Junction Network Options

[Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
	Left	Normal/unknown	115	2 - R405 SE

Arms

Arms

Arm	Name	Description
1	R449 NE	
2	R405 SE	
3	R405 NW	

Roundabout Geometry

Arm	V - Approach road half-width (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
1 - R449 NE	3.30	6.64	9.9	40.2	43.0	26.9	
2 - R405 SE	3.53	7.28	11.2	33.4	43.0	13.5	
3 - R405 NW	3.48	7.37	15.1	39.2	43.0	24.9	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Final slope	Final intercept (PCU/hr)
1 - R449 NE	0.613	1539
2 - R405 SE	0.665	1742
3 - R405 NW	0.660	1771

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D1	2018	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix Vehicle mix source		PCU Factor for a HV (PCU)	
✓ HV Percentage		2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	193	100.000
2 - R405 SE		✓	616	100.000
3 - R405 NW		✓	147	100.000

Origin-Destination Data

Demand (Veh/hr)

		То				
		1 - R449 NE	2 - R405 SE	3 - R405 NW		
From	1 - R449 NE	0	164	29		
FIOII	2 - R405 SE	503	0	113		
	3 - R405 NW	66	81	0		

Vehicle Mix

Heavy Vehicle Percentages

		То				
		1 - R449 NE	2 - R405 SE	3 - R405 NW		
From	1 - R449 NE	10	10	10		
FIOIII	2 - R405 SE	10	10	10		
	3 - R405 NW	10	10	10		

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.16	3.18	0.2	А
2 - R405 SE	0.43	4.07	0.8	A
3 - R405 NW	0.13	3.32	0.1	A

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	145	61	1362	0.107	145	0.1	2.957	А
2 - R405 SE	464	22	1569	0.296	462	0.4	3.247	А
3 - R405 NW	111	377	1361	0.081	110	0.1	2.878	А

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	174	73	1355	0.128	173	0.1	3.046	А
2 - R405 SE	554	26	1567	0.354	553	0.5	3.551	А
3 - R405 NW	132	452	1312	0.101	132	0.1	3.050	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	212	89	1345	0.158	212	0.2	3.178	А
2 - R405 SE	678	32	1563	0.434	677	0.8	4.062	А
3 - R405 NW	162	553	1245	0.130	162	0.1	3.322	А

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	212	89	1345	0.158	212	0.2	3.178	А
2 - R405 SE	678	32	1563	0.434	678	0.8	4.070	А
3 - R405 NW	162	554	1244	0.130	162	0.1	3.324	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	174	73	1355	0.128	174	0.1	3.049	А
2 - R405 SE	554	26	1566	0.354	555	0.6	3.559	А
3 - R405 NW	132	453	1311	0.101	132	0.1	3.055	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	145	61	1362	0.107	145	0.1	2.958	А
2 - R405 SE	464	22	1569	0.296	464	0.4	3.258	А
3 - R405 NW	111	379	1360	0.081	111	0.1	2.881	А

Existing Layout - 2018, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	6.57	А

Junction Network Options

Driving side	e Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	32	1 - R449 NE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D2	2018	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	778	100.000
2 - R405 SE		✓	757	100.000
3 - R405 NW		✓	280	100.000

Origin-Destination Data

Demand (Veh/hr)

		То										
		1 - R449 NE	2 - R405 SE	3 - R405 NW								
From	1 - R449 NE	0	703	75								
FIOM	2 - R405 SE	589	0	168								
	3 - R405 NW	81	199	0								

Vehicle Mix

Heavy Vehicle Percentages

		То										
		1 - R449 NE	2 - R405 SE	3 - R405 NW								
From	1 - R449 NE	10	10	10								
FIOIII	2 - R405 SE	10	10	10								
	3 - R405 NW	10	10	10								

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.68	8.80	2.1	А
2 - R405 SE	0.55	5.18	1.2	A
3 - R405 NW	0.26	4.12	0.4	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	586	149	1308	0.448	583	0.8	4.940	А
2 - R405 SE	570	56	1546	0.369	568	0.6	3.666	А
3 - R405 NW	211	442	1319	0.160	210	0.2	3.246	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	699	179	1290	0.542	698	1.2	6.066	А
2 - R405 SE	681	67	1539	0.442	680	0.8	4.186	А
3 - R405 NW	252	529	1261	0.200	251	0.2	3.566	А

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	857	219	1265	0.677	853	2.0	8.657	А
2 - R405 SE	833	82	1529	0.545	832	1.2	5.152	А
3 - R405 NW	308	647	1183	0.261	308	0.4	4.113	А

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	857	219	1265	0.677	856	2.1	8.801	А
2 - R405 SE	833	83	1529	0.545	833	1.2	5.176	А
3 - R405 NW	308	648	1182	0.261	308	0.4	4.120	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	699	179	1290	0.542	703	1.2	6.169	А
2 - R405 SE	681	68	1539	0.442	682	0.8	4.211	А
3 - R405 NW	252	531	1260	0.200	252	0.3	3.573	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	586	150	1308	0.448	587	0.8	5.009	А
2 - R405 SE	570	57	1546	0.369	571	0.6	3.695	A
3 - R405 NW	211	444	1317	0.160	211	0.2	3.257	A

Existing Layout - 2020, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	3.85	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	
Left	Normal/unknown	109	2 - R405 SE	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D3	2020	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	198	100.000
2 - R405 SE		✓	633	100.000
3 - R405 NW		✓	151	100.000

Origin-Destination Data

Demand (Veh/hr)

		То									
		1 - R449 NE	2 - R405 SE	3 - R405 NW							
From	1 - R449 NE	0	168	30							
FIOM	2 - R405 SE	517	0	116							
	3 - R405 NW	68	83	0							

Vehicle Mix

		То									
		1 - R449 NE	2 - R405 SE	3 - R405 NW							
From	1 - R449 NE	10	10	10							
From	2 - R405 SE	10	10	10							
	3 - R405 NW	10	10	10							

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.16	3.20	0.2	А
2 - R405 SE	0.45	4.16	0.8	А
3 - R405 NW	0.13	3.37	0.2	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	149	62	1361	0.110	149	0.1	2.966	А
2 - R405 SE	477	23	1569	0.304	475	0.4	3.284	А
3 - R405 NW	114	388	1354	0.084	113	0.1	2.901	А

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	178	75	1354	0.131	178	0.2	3.061	А
2 - R405 SE	569	27	1566	0.363	569	0.6	3.607	А
3 - R405 NW	136	464	1304	0.104	136	0.1	3.081	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	218	91	1344	0.162	218	0.2	3.197	А
2 - R405 SE	697	33	1562	0.446	696	0.8	4.153	А
3 - R405 NW	166	568	1235	0.135	166	0.2	3.368	А

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	218	91	1344	0.162	218	0.2	3.197	A
2 - R405 SE	697	33	1562	0.446	697	0.8	4.161	А
3 - R405 NW	166	569	1234	0.135	166	0.2	3.369	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	178	75	1354	0.131	178	0.2	3.064	A
2 - R405 SE	569	27	1566	0.363	570	0.6	3.617	А
3 - R405 NW	136	466	1303	0.104	136	0.1	3.087	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	149	63	1361	0.110	149	0.1	2.972	А
2 - R405 SE	477	23	1569	0.304	477	0.4	3.301	А
3 - R405 NW	114	390	1353	0.084	114	0.1	2.907	А

Existing Layout - 2020, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	6.96	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	28	1 - R449 NE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D4	2020	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	801	100.000
2 - R405 SE		~	779	100.000
3 - R405 NW		✓	288	100.000

Origin-Destination Data

Demand (Veh/hr)

	То								
		1 - R449 NE	2 - R405 SE	3 - R405 NW					
From	1 - R449 NE	0	723	78					
FIOIII	2 - R405 SE	606	0	173					
	3 - R405 NW	83	205	0					

Vehicle Mix

	То							
		1 - R449 NE 2 - R405 SE		3 - R405 NW				
From	1 - R449 NE	10	10	10				
FIOM	2 - R405 SE	10	10	10				
	3 - R405 NW	10	10	10				

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.70	9.48	2.3	А
2 - R405 SE	0.56	5.38	1.3	А
3 - R405 NW	0.27	4.22	0.4	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	603	154	1305	0.462	600	0.8	5.077	А
2 - R405 SE	586	58	1545	0.380	584	0.6	3.737	А
3 - R405 NW	217	454	1310	0.165	216	0.2	3.289	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	720	184	1287	0.560	718	1.3	6.318	А
2 - R405 SE	700	70	1537	0.456	699	0.8	4.292	А
3 - R405 NW	259	544	1251	0.207	259	0.3	3.628	A

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	882	225	1261	0.699	878	2.2	9.290	A
2 - R405 SE	858	85	1527	0.562	856	1.3	5.351	А
3 - R405 NW	317	666	1170	0.271	317	0.4	4.214	А

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	882	226	1261	0.699	882	2.3	9.478	А
2 - R405 SE	858	86	1527	0.562	858	1.3	5.380	А
3 - R405 NW	317	667	1170	0.271	317	0.4	4.222	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	720	185	1286	0.560	724	1.3	6.445	A
2 - R405 SE	700	71	1537	0.456	702	0.8	4.320	А
3 - R405 NW	259	546	1250	0.207	259	0.3	3.639	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	603	155	1305	0.462	605	0.9	5.154	А
2 - R405 SE	586	59	1545	0.380	587	0.6	3.766	A
3 - R405 NW	217	457	1308	0.166	217	0.2	3.298	А

Existing Layout - 2020 With Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	3.89	А

Junction Network Options

Drivi	ing side	Lighting	Network residual capacity (%)	First arm reaching threshold
L	Left	Normal/unknown	106	2 - R405 SE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D5	2020 With Dev	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	210	100.000
2 - R405 SE		✓	641	100.000
3 - R405 NW		✓	154	100.000

Origin-Destination Data

Demand (Veh/hr)

	То					
F		1 - R449 NE	2 - R405 SE	3 - R405 NW		
	1 - R449 NE	0	176	34		
From	2 - R405 SE	525	0	116		
	3 - R405 NW	71	83	0		

Vehicle Mix

	То					
		1 - R449 NE	2 - R405 SE	3 - R405 NW		
From	1 - R449 NE	10	10	10		
From	2 - R405 SE	10	10	10		
	3 - R405 NW	10	10	10		

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.17	3.24	0.2	А
2 - R405 SE	0.45	4.22	0.8	А
3 - R405 NW	0.14	3.40	0.2	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	158	62	1361	0.116	158	0.1	2.988	А
2 - R405 SE	483	26	1567	0.308	481	0.4	3.308	А
3 - R405 NW	116	394	1350	0.086	116	0.1	2.916	А

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	189	75	1354	0.139	189	0.2	3.089	А
2 - R405 SE	576	31	1564	0.369	576	0.6	3.642	А
3 - R405 NW	138	472	1299	0.107	138	0.1	3.101	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	231	91	1344	0.172	231	0.2	3.235	А
2 - R405 SE	706	37	1559	0.453	705	0.8	4.210	А
3 - R405 NW	170	577	1229	0.138	169	0.2	3.397	А

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	231	91	1344	0.172	231	0.2	3.235	А
2 - R405 SE	706	37	1559	0.453	706	0.8	4.219	А
3 - R405 NW	170	578	1228	0.138	170	0.2	3.398	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	189	75	1354	0.139	189	0.2	3.090	А
2 - R405 SE	576	31	1563	0.369	577	0.6	3.652	А
3 - R405 NW	138	473	1298	0.107	139	0.1	3.107	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	158	63	1361	0.116	158	0.1	2.992	А
2 - R405 SE	483	26	1567	0.308	483	0.4	3.325	А
3 - R405 NW	116	396	1349	0.086	116	0.1	2.919	А

Existing Layout - 2020 With Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	7.01	А

Junction Network Options

Driv	ing side	Lighting	Network residual capacity (%)	First arm reaching threshold
	Left	Normal/unknown	28	1 - R449 NE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D6	2020 With Dev	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	804	100.000
2 - R405 SE		✓	781	100.000
3 - R405 NW		~	289	100.000

Origin-Destination Data

Demand (Veh/hr)

	То						
		1 - R449 NE	2 - R405 SE	3 - R405 NW			
From	1 - R449 NE	0	725	79			
FIOM	2 - R405 SE	608	0	173			
	3 - R405 NW	84	205	0			

Vehicle Mix

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	10	10	10				
From	2 - R405 SE	10	10	10				
	3 - R405 NW	10	10	10				

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.70	9.56	2.3	А
2 - R405 SE	0.56	5.40	1.3	A
3 - R405 NW	0.27	4.23	0.4	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	605	154	1305	0.464	602	0.9	5.094	А
2 - R405 SE	588	59	1545	0.381	586	0.6	3.745	А
3 - R405 NW	218	456	1309	0.166	217	0.2	3.294	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	723	184	1287	0.562	721	1.3	6.348	А
2 - R405 SE	702	71	1537	0.457	701	0.8	4.304	А
3 - R405 NW	260	546	1250	0.208	260	0.3	3.635	A

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	885	225	1261	0.702	881	2.3	9.368	А
2 - R405 SE	860	87	1526	0.563	858	1.3	5.374	А
3 - R405 NW	318	668	1169	0.272	318	0.4	4.227	А

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	885	226	1261	0.702	885	2.3	9.562	A
2 - R405 SE	860	87	1526	0.564	860	1.3	5.404	А
3 - R405 NW	318	669	1168	0.272	318	0.4	4.235	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	723	185	1286	0.562	727	1.3	6.478	А
2 - R405 SE	702	71	1536	0.457	704	0.8	4.332	А
3 - R405 NW	260	548	1248	0.208	260	0.3	3.646	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	605	155	1305	0.464	607	0.9	5.171	A
2 - R405 SE	588	60	1544	0.381	589	0.6	3.771	A
3 - R405 NW	218	458	1307	0.166	218	0.2	3.306	A

Existing Layout - 2025, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	4.05	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	95	2 - R405 SE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D7	2025	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix Vehicle mix sou		PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	214	100.000
2 - R405 SE		✓	679	100.000
3 - R405 NW		✓	161	100.000

Origin-Destination Data

Demand (Veh/hr)

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	0	181	33				
FIOM	2 - R405 SE	554	0	125				
	3 - R405 NW	72	89	0				

Vehicle Mix

	То								
		1 - R449 NE	2 - R405 SE	3 - R405 NW					
From	1 - R449 NE	10	10	10					
FIOIII	2 - R405 SE	10	10	10					
	3 - R405 NW	10	10	10					

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.18	3.26	0.2	А
2 - R405 SE	0.48	4.43	0.9	А
3 - R405 NW	0.15	3.49	0.2	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	161	67	1359	0.119	161	0.1	3.003	А
2 - R405 SE	511	25	1567	0.326	509	0.5	3.397	А
3 - R405 NW	121	416	1336	0.091	121	0.1	2.963	A

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	192	80	1351	0.142	192	0.2	3.107	А
2 - R405 SE	610	30	1564	0.390	610	0.6	3.770	А
3 - R405 NW	145	498	1282	0.113	145	0.1	3.165	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	236	98	1340	0.176	235	0.2	3.260	А
2 - R405 SE	748	36	1560	0.479	746	0.9	4.420	А
3 - R405 NW	177	609	1208	0.147	177	0.2	3.491	А

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	236	98	1339	0.176	236	0.2	3.260	А
2 - R405 SE	748	36	1560	0.479	748	0.9	4.432	А
3 - R405 NW	177	610	1207	0.147	177	0.2	3.493	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	192	80	1350	0.142	193	0.2	3.108	А
2 - R405 SE	610	30	1564	0.390	611	0.6	3.782	А
3 - R405 NW	145	499	1281	0.113	145	0.1	3.169	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	161	67	1358	0.119	161	0.1	3.006	А
2 - R405 SE	511	25	1567	0.326	512	0.5	3.414	А
3 - R405 NW	121	418	1334	0.091	121	0.1	2.967	А

Existing Layout - 2025, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS	
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	8.19	А	

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	
Left	Normal/unknown	20	1 - R449 NE	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D8	2025	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	858	100.000
2 - R405 SE		✓	835	100.000
3 - R405 NW		~	308	100.000

Origin-Destination Data

Demand (Veh/hr)

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	0	775	83				
FIOM	2 - R405 SE	650	0	185				
	3 - R405 NW	89	219	0				

Vehicle Mix

		То									
		1 - R449 NE	2 - R405 SE	3 - R405 NW							
From	1 - R449 NE	10	10	10							
FIOIII	2 - R405 SE	10	10	10							
	3 - R405 NW	10	10	10							

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.75	11.68	3.0	В
2 - R405 SE 0.60		5.96	1.5	А
3 - R405 NW	0.30	4.51	0.4	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	646	164	1299	0.497	642	1.0	5.450	А
2 - R405 SE	629	62	1543	0.408	626	0.7	3.915	А
3 - R405 NW	232	487	1288	0.180	231	0.2	3.401	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	771	197	1279	0.603	769	1.5	7.035	A
2 - R405 SE	751	74	1534	0.489	750	0.9	4.580	А
3 - R405 NW	277	584	1225	0.226	277	0.3	3.796	А

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	945	241	1252	0.755	939	2.9	11.294	В
2 - R405 SE	919	91	1523	0.603	917	1.5	5.917	А
3 - R405 NW	339	714	1139	0.298	339	0.4	4.496	А

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	945	241	1252	0.755	944	3.0	11.684	В
2 - R405 SE	919	91	1523	0.604	919	1.5	5.962	А
3 - R405 NW	339	716	1138	0.298	339	0.4	4.508	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	771	197	1279	0.603	777	1.5	7.261	А
2 - R405 SE	751	75	1534	0.489	753	1.0	4.621	А
3 - R405 NW	277	586	1223	0.226	277	0.3	3.807	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	646	165	1298	0.498	648	1.0	5.557	А
2 - R405 SE	629	63	1542	0.408	630	0.7	3.950	A
3 - R405 NW	232	490	1286	0.180	232	0.2	3.417	А

Existing Layout - 2025 With Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	4.10	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	92	2 - R405 SE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D9	2025 With Dev	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	224	100.000
2 - R405 SE		✓	687	100.000
3 - R405 NW		✓	165	100.000

Origin-Destination Data

Demand (Veh/hr)

		То								
		1 - R449 NE	2 - R405 SE	3 - R405 NW						
From	1 - R449 NE	0	188	36						
FIOM	2 - R405 SE	562	0	125						
	3 - R405 NW	76	89	0						

Vehicle Mix

		Т	ō	То								
		1 - R449 NE		3 - R405 NW								
From	1 - R449 NE	10	10	10								
From	2 - R405 SE	10	10	10								
	3 - R405 NW	10	10	10								

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.18	3.29	0.2	А
2 - R405 SE	0.49	4.49	0.9	А
3 - R405 NW	0.15	3.53	0.2	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	169	67	1359	0.124	168	0.1	3.022	А
2 - R405 SE	517	27	1566	0.330	515	0.5	3.421	А
3 - R405 NW	124	421	1332	0.093	124	0.1	2.980	А

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	201	80	1351	0.149	201	0.2	3.132	А
2 - R405 SE	618	32	1562	0.395	617	0.6	3.806	А
3 - R405 NW	148	505	1277	0.116	148	0.1	3.189	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	247	98	1340	0.184	246	0.2	3.293	A
2 - R405 SE	756	40	1557	0.486	755	0.9	4.481	А
3 - R405 NW	182	618	1202	0.151	181	0.2	3.526	A

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	247	98	1339	0.184	247	0.2	3.293	A
2 - R405 SE	756	40	1557	0.486	756	0.9	4.493	А
3 - R405 NW	182	619	1202	0.151	182	0.2	3.528	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	201	80	1350	0.149	202	0.2	3.135	А
2 - R405 SE	618	32	1562	0.395	619	0.7	3.818	А
3 - R405 NW	148	506	1276	0.116	149	0.1	3.192	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	169	67	1358	0.124	169	0.1	3.028	А
2 - R405 SE	517	27	1566	0.330	518	0.5	3.436	А
3 - R405 NW	124	424	1330	0.093	124	0.1	2.986	А

Existing Layout - 2025 With Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	8.26	А

Junction Network Options

D	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
	Left	Normal/unknown	20	1 - R449 NE

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D10	2025 With Dev	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	861	100.000
2 - R405 SE		✓	836	100.000
3 - R405 NW		~	309	100.000

Origin-Destination Data

Demand (Veh/hr)

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	0	777	84				
FIOIII	2 - R405 SE	651	0	185				
	3 - R405 NW	90	219	0				

Vehicle Mix

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	10	10	10				
From	2 - R405 SE	10	10	10				
	3 - R405 NW	10	10	10				

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.76	11.81	3.0	В
2 - R405 SE	0.60	5.98	1.5	A
3 - R405 NW	0.30	4.52	0.4	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	648	164	1299	0.499	644	1.0	5.467	А
2 - R405 SE	629	63	1542	0.408	627	0.7	3.921	А
3 - R405 NW	233	488	1288	0.181	232	0.2	3.405	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	774	197	1279	0.605	772	1.5	7.070	А
2 - R405 SE	752	75	1534	0.490	750	1.0	4.589	А
3 - R405 NW	278	584	1224	0.227	277	0.3	3.802	А

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	948	241	1252	0.757	942	3.0	11.405	В
2 - R405 SE	920	92	1523	0.604	918	1.5	5.934	А
3 - R405 NW	340	715	1138	0.299	340	0.4	4.506	А

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	948	241	1252	0.757	948	3.0	11.809	В
2 - R405 SE	920	92	1522	0.605	920	1.5	5.980	А
3 - R405 NW	340	717	1137	0.299	340	0.4	4.518	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	774	197	1279	0.605	780	1.6	7.301	А
2 - R405 SE	752	76	1533	0.490	754	1.0	4.630	А
3 - R405 NW	278	587	1223	0.227	278	0.3	3.816	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	648	165	1298	0.499	650	1.0	5.574	А
2 - R405 SE	629	63	1542	0.408	630	0.7	3.957	A
3 - R405 NW	233	491	1286	0.181	233	0.2	3.421	А

Existing Layout - 2035, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	4.39	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	77	2 - R405 SE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D11	2035	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	234	100.000
2 - R405 SE		~	745	100.000
3 - R405 NW		✓	177	100.000

Origin-Destination Data

Demand (Veh/hr)

	То					
		1 - R449 NE	2 - R405 SE	3 - R405 NW		
From	1 - R449 NE	0	198	36		
FIOM	2 - R405 SE	608	0	137		
	3 - R405 NW	79	98	0		

Vehicle Mix

	То					
		1 - R449 NE	2 - R405 SE	3 - R405 NW		
From	1 - R449 NE	10	10	10		
From	2 - R405 SE	10	10	10		
	3 - R405 NW	10	10	10		

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.19	3.35	0.2	А
2 - R405 SE	0.53	4.88	1.1	A
3 - R405 NW	0.17	3.70	0.2	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	176	74	1354	0.130	176	0.1	3.052	А
2 - R405 SE	561	27	1566	0.358	559	0.6	3.567	А
3 - R405 NW	133	456	1309	0.102	133	0.1	3.060	А

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	210	88	1346	0.156	210	0.2	3.170	А
2 - R405 SE	670	32	1562	0.429	669	0.7	4.026	А
3 - R405 NW	159	546	1250	0.127	159	0.1	3.300	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	258	108	1333	0.193	257	0.2	3.345	A
2 - R405 SE	820	40	1557	0.527	819	1.1	4.865	А
3 - R405 NW	195	668	1169	0.167	195	0.2	3.695	А

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	258	108	1333	0.193	258	0.2	3.345	А
2 - R405 SE	820	40	1557	0.527	820	1.1	4.882	А
3 - R405 NW	195	669	1168	0.167	195	0.2	3.697	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	210	88	1345	0.156	211	0.2	3.172	А
2 - R405 SE	670	32	1562	0.429	671	0.8	4.045	А
3 - R405 NW	159	548	1249	0.127	159	0.1	3.305	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	176	74	1354	0.130	176	0.2	3.058	A
2 - R405 SE	561	27	1566	0.358	562	0.6	3.589	А
3 - R405 NW	133	458	1308	0.102	133	0.1	3.065	A

Existing Layout - 2035, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	11.23	В

Junction Network Options

Driv	ving side	Lighting	Network residual capacity (%)	First arm reaching threshold
	Left	Normal/unknown	9	1 - R449 NE

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D12	2035	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	940	100.000
2 - R405 SE		✓	915	100.000
3 - R405 NW		✓	339	100.000

Origin-Destination Data

Demand (Veh/hr)

	То						
		1 - R449 NE	2 - R405 SE	3 - R405 NW			
From	1 - R449 NE	0	849	91			
FIOM	2 - R405 SE	712	0	203			
	3 - R405 NW	98	241	0			

Vehicle Mix

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	10	10	10				
From	2 - R405 SE	10	10	10				
	3 - R405 NW	10	10	10				

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.84	17.55	4.8	С
2 - R405 SE	0.66	7.06	2.0	А
3 - R405 NW	0.34	5.00	0.5	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	708	181	1289	0.549	703	1.2	6.095	А
2 - R405 SE	689	68	1539	0.448	686	0.8	4.204	А
3 - R405 NW	255	534	1258	0.203	254	0.3	3.583	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	845	216	1267	0.667	842	2.0	8.413	А
2 - R405 SE	823	82	1530	0.538	821	1.1	5.071	А
3 - R405 NW	305	639	1188	0.256	304	0.3	4.071	A

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	1035	265	1237	0.837	1024	4.6	16.144	С
2 - R405 SE	1007	99	1518	0.664	1004	1.9	6.966	А
3 - R405 NW	373	781	1094	0.341	373	0.5	4.985	А

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	1035	265	1237	0.837	1034	4.8	17.546	С
2 - R405 SE	1007	100	1517	0.664	1007	2.0	7.057	А
3 - R405 NW	373	784	1093	0.342	373	0.5	5.004	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	845	217	1266	0.667	856	2.1	9.001	A
2 - R405 SE	823	83	1529	0.538	826	1.2	5.144	А
3 - R405 NW	305	642	1186	0.257	305	0.3	4.091	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	708	182	1288	0.549	711	1.2	6.271	А
2 - R405 SE	689	69	1538	0.448	690	0.8	4.255	A
3 - R405 NW	255	537	1255	0.203	256	0.3	3.603	А

Existing Layout - 2035 With Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	4.44	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	75	2 - R405 SE

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D13	2035 With Dev	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Arm Linked arm Use O-D data		Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	244	100.000
2 - R405 SE		✓	752	100.000
3 - R405 NW		✓	181	100.000

Origin-Destination Data

Demand (Veh/hr)

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	0	205	39				
FIOIII	2 - R405 SE	615	0	137				
	3 - R405 NW	83	98	0				

Vehicle Mix

	То							
		1 - R449 NE	2 - R405 SE	3 - R405 NW				
From	1 - R449 NE	10	10	10				
From	2 - R405 SE	10	10	10				
	3 - R405 NW	10	10	10				

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max delay (s) Max Queue (Veh)	
1 - R449 NE	0.20	3.38	0.3	А
2 - R405 SE	2 - R405 SE 0.53		1.1	А
3 - R405 NW	0.17	3.73	0.2	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	184	74	1354	0.136	183	0.2	3.071	А
2 - R405 SE	566	29	1564	0.362	564	0.6	3.591	А
3 - R405 NW	136	461	1306	0.104	136	0.1	3.075	А

08:00 - 08:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	219	88	1346	0.163	219	0.2	3.195	А
2 - R405 SE	676	35	1561	0.433	675	0.8	4.063	А
3 - R405 NW	163	552	1246	0.131	163	0.1	3.323	А

08:15 - 08:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	269	108	1333	0.201	268	0.3	3.380	A
2 - R405 SE	828	43	1555	0.532	826	1.1	4.929	А
3 - R405 NW	199	676	1164	0.171	199	0.2	3.731	А

08:30 - 08:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	269	108	1333	0.201	269	0.3	3.380	А
2 - R405 SE	828	43	1555	0.532	828	1.1	4.949	А
3 - R405 NW	199	677	1163	0.171	199	0.2	3.734	А

08:45 - 09:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	219	88	1345	0.163	220	0.2	3.199	А
2 - R405 SE	676	35	1560	0.433	677	0.8	4.083	А
3 - R405 NW	163	554	1244	0.131	163	0.2	3.331	А

09:00 - 09:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	184	74	1354	0.136	184	0.2	3.077	А
2 - R405 SE	566	29	1564	0.362	567	0.6	3.611	А
3 - R405 NW	136	464	1304	0.105	136	0.1	3.085	А

Existing Layout - 2035 With Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Junction Delay (s)	Junction LOS	
1	R449 / R405 Three-Arm Roundabout	Standard Roundabout	11.42	В	

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	
Left	Normal/unknown	9	1 - R449 NE	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D14	2035 With Dev	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
1 - R449 NE		✓	944	100.000
2 - R405 SE		~	917	100.000
3 - R405 NW		~	340	100.000

Origin-Destination Data

Demand (Veh/hr)

	То								
		1 - R449 NE	2 - R405 SE	3 - R405 NW					
From	1 - R449 NE	0	852	92					
FIOM	2 - R405 SE	714	0	203					
	3 - R405 NW	99	241	0					

Vehicle Mix

		То								
		1 - R449 NE	2 - R405 SE	3 - R405 NW						
From	1 - R449 NE	10	10	10						
From	2 - R405 SE	10	10	10						
	3 - R405 NW	10	10	10						

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
1 - R449 NE	0.84	17.92	5.0	С
2 - R405 SE	0.67	7.10	2.0	А
3 - R405 NW	0.34	5.02	0.5	А

Main Results for each time segment

17:45 - 18:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	711	181	1289	0.551	706	1.2	6.127	А
2 - R405 SE	690	69	1538	0.449	687	0.8	4.214	А
3 - R405 NW	256	535	1257	0.204	255	0.3	3.590	А

18:00 - 18:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	849	216	1267	0.670	846	2.0	8.482	A
2 - R405 SE	824	82	1529	0.539	823	1.2	5.088	А
3 - R405 NW	306	641	1187	0.257	305	0.3	4.080	А

18:15 - 18:30

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	1039	265	1237	0.840	1028	4.7	16.425	С
2 - R405 SE	1010	100	1517	0.665	1006	1.9	7.006	A
3 - R405 NW	374	784	1093	0.343	374	0.5	5.003	A

18:30 - 18:45

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	1039	265	1237	0.840	1038	5.0	17.916	С
2 - R405 SE	1010	101	1517	0.666	1010	2.0	7.098	А
3 - R405 NW	374	786	1091	0.343	374	0.5	5.022	А

18:45 - 19:00

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	849	217	1266	0.670	860	2.1	9.099	A
2 - R405 SE	824	84	1528	0.539	827	1.2	5.162	А
3 - R405 NW	306	644	1185	0.258	306	0.3	4.102	А

19:00 - 19:15

Arm	Total Demand (Veh/hr)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
1 - R449 NE	711	182	1288	0.552	714	1.2	6.308	А
2 - R405 SE	690	70	1538	0.449	692	0.8	4.265	A
3 - R405 NW	256	539	1254	0.204	256	0.3	3.607	A

Junctions 9

PICADY 9 - Priority Intersection Module

Version: 9.0.1.4646 [] © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL:

Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 180814_Kildare Site Access_V1.j9 **Path:** \\eu.aecomnet.com\EMIA\UKI\IEDBL2\Jobs\PR-334308_Kildare_Civic_amenity_transpor\400_Technical\431_Transport\Modelling **Report generation date:** 15/08/2018 13:36:26

»Proposed Layout - 2018, AM »Proposed Layout - 2018, PM »Proposed Layout - 2020, AM »Proposed Layout - 2020, PM »Proposed Layout - 2020 With Dev, AM »Proposed Layout - 2025, AM »Proposed Layout - 2025, PM »Proposed Layout - 2025 With Dev, AM »Proposed Layout - 2025 With Dev, PM »Proposed Layout - 2035, AM »Proposed Layout - 2035, PM »Proposed Layout - 2035, With Dev, AM »Proposed Layout - 2035 With Dev, PM

Summary of junction performance

				AN	1					PN	1	
	Queue (Veh)	Delay (s)	RFC	LOS	Junction Delay (s)	Network Residual Capacity	Queue (Veh)	Delay (s)	RFC	LOS	Junction Delay (s)	Network Residual Capacity
						Proposed La	ayout - 2	2018				
Stream B-AC	0.0	0.00	0.00	Α	0.00	900 %	0.0	0.00	0.00	Α	0.00	900 %
Stream C-AB	0.0	0.00	0.00	А	0.00	0	0.0	0.00	0.00	А	0.00	0
					Proposed Layout - 2020							
Stream B-AC	0.0	0.00	0.00	Α	0.00	900 %	0.0	0.00	0.00	A	0.00	900 %
Stream C-AB	0.0	0.00	0.00	А	0.00	0	0.0	0.00	0.00	А	0.00	0
					Prop	osed Layou	t - 2020	With D)ev			
Stream B-AC	0.2	8.57	0.13	А	0.93	97 %	0.1	9.79	0.06	A	0.19	42 %
Stream C-AB	0.1	7.27	0.09	А	0.93	[Stream B- AC]	0.0	7.19	0.03	A	0.19	[Stream B- AC]
						Proposed La	ayout - 2	2025				
Stream B-AC	0.0	0.00	0.00	A	0.00	900 %	0.0	0.00	0.00	A	0.00	900 %
Stream C-AB	0.0	0.00	0.00	А	0.00	0	0.0	0.00	0.00	А	0.00	۵
					Prop	osed Layou	t - 2025 With Dev					
Stream B-AC	0.2	8.90	0.14	А	0.91	87 %	0.1	10.65	0.06	в	0.19	33 %
Stream C-AB	0.1	7.49	0.10	А	0.91	[Stream B- AC]	0.0	7.45	0.03	А	0.19	[Stream B- AC]
						Proposed La	ayout - 2	2035				
Stream B-AC	0.0	0.00	0.00	A	0.00	900 %	0.0	0.00	0.00	A	0.00	900 %
Stream C-AB	0.0	0.00	0.00	А	0.00	0	0.0	0.00	0.00	А	0.00	0
					Prop	osed Layou	t - 2035	With D)ev			
Stream B-AC	0.2	9.43	0.14	А	0.88	73 %	0.1	12.37	0.07	в	0.20	21 %
Stream C-AB	0.1	7.83	0.10	А	0.00	[Stream B- AC]	0.0	7.85	0.03	А	0.20	[Stream B- AC]

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Junction LOS and Junction Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	Proposed Site Access Priority Junction
Location	R449, Celbridge, Co. Kildare
Site number	
Date	14/08/2018
Version	
Status	Proposed
Identifier	
Client	
Jobnumber	
Enumerator	EU\theodore.jones
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of dela units
m	kph	Veh	Veh	perHour	S	-Min	perMin
	59 A-B A-C		B - Site Ad	BAC DOOD			Ш
A - R449 W		•			0.000	C-AB C-A	C - R449 E
						↑ 0 193	
ow original traffic demand (V (downstream end) show RF4							

Analysis Options

Calculate Queue	Calculate residual	Residual capacity	RFC	Average Delay	Queue threshold
Percentiles	capacity	criteria type	Threshold	threshold (s)	(PCU)
	✓	Delay	0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2018	AM	ONE HOUR	07:45	09:15	15
D2	2018	PM	ONE HOUR	17:45	19:15	15
D3	2020	AM	ONE HOUR	07:45	09:15	15
D4	2020	PM	ONE HOUR	17:45	19:15	15
D5	2020 With Dev	AM	ONE HOUR	07:45	09:15	15
D6	2020 With Dev	PM	ONE HOUR	17:45	19:15	15
D7	2025	AM	ONE HOUR	07:45	09:15	15
D8	2025	PM	ONE HOUR	17:45	19:15	15
D9	2025 With Dev	AM	ONE HOUR	07:45	09:15	15
D10	2025 With Dev	PM	ONE HOUR	17:45	19:15	15
D11	2035	AM	ONE HOUR	07:45	09:15	15
D12	2035	PM	ONE HOUR	17:45	19:15	15
D13	2035 With Dev	AM	ONE HOUR	07:45	09:15	15
D14	2035 With Dev	PM	ONE HOUR	17:45	19:15	15

Analysis Set Details

ID	Name	Network flow scaling factor (%)
A1	Proposed Layout	100.000

Proposed Layout - 2018, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	900	

Arms

Arms

Arm	Name	Description	Arm type
Α	R449 W		Major
В	Site Access N		Minor
С	R449 E		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right turn bay	Width for right turn (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
C - R449 E	6.50		✓	3.60	250.0	✓	7.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Site Access N	One lane	4.44	54	138

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (Veh/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	645	0.115	0.291	0.183	0.415
1	B-C	814	0.122	0.308	-	-
1	C-B	828	0.314	0.314	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D1	2018	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	569	100.000
B - Site Access N		~	0	100.000
C - R449 E		✓	193	100.000

Origin-Destination Data

Demand (Veh/hr)

		То								
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	0	0	569						
FIOIII	B - Site Access N	0	0	0						
	C - R449 E	193	0	0						

Vehicle Mix

Heavy Vehicle Percentages

		То								
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	10	10	10						
FIOIII	B - Site Access N	10	10	10						
	C - R449 E	10	10	10						

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	507	0.000	0	0.0	0.000	A
C-AB	0	1237	0.000	0	0.0	0.000	A
C-A	145			145			
A-B	0			0			
A-C	428			428			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	478	0.000	0	0.0	0.000	A
C-AB	0	1185	0.000	0	0.0	0.000	A
C-A	174			174			
A-B	0			0			
A-C	512			512			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	438	0.000	0	0.0	0.000	А
C-AB	0	1113	0.000	0	0.0	0.000	А
C-A	212			212			
A-B	0			0			
A-C	626			626			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	438	0.000	0	0.0	0.000	А
C-AB	0	1113	0.000	0	0.0	0.000	А
C-A	212			212			
A-B	0			0			
A-C	626			626			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	478	0.000	0	0.0	0.000	A
C-AB	0	1185	0.000	0	0.0	0.000	A
C-A	174			174			
A-B	0			0			
A-C	512			512			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	507	0.000	0	0.0	0.000	А
C-AB	0	1237	0.000	0	0.0	0.000	А
C-A	145			145			
A-B	0			0			
A-C	428			428			

Proposed Layout - 2018, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

[Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

C	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
	Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D2	2018	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	670	100.000
B - Site Access N		✓	0	100.000
C - R449 E		✓	778	100.000

Origin-Destination Data

Demand (Veh/hr)

	То									
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	0	0	670						
From	B - Site Access N	0	0	0						
	C - R449 E	778	0	0						

Vehicle Mix

	То									
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	10	10	10						
From	B - Site Access N	10	10	10						
	C - R449 E	10	10	10						

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	424	0.000	0	0.0	0.000	A
C-AB	0	1189	0.000	0	0.0	0.000	A
C-A	586			586			
A-B	0			0			
A-C	504			504			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	375	0.000	0	0.0	0.000	А
C-AB	0	1128	0.000	0	0.0	0.000	А
C-A	699			699			
A-B	0			0			
A-C	602			602			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	303	0.000	0	0.0	0.000	A
C-AB	0	1043	0.000	0	0.0	0.000	A
C-A	857			857			
A-B	0			0			
A-C	738			738			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	303	0.000	0	0.0	0.000	A
C-AB	0	1043	0.000	0	0.0	0.000	A
C-A	857			857			
A-B	0			0			
A-C	738			738			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	375	0.000	0	0.0	0.000	A
C-AB	0	1128	0.000	0	0.0	0.000	A
C-A	699			699			
A-B	0			0			
A-C	602			602			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	424	0.000	0	0.0	0.000	A
C-AB	0	1189	0.000	0	0.0	0.000	А
C-A	586			586			
A-B	0			0			
A-C	504			504			

Proposed Layout - 2020, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

[Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D3	2020	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	585	100.000
B - Site Access N		✓	0	100.000
C - R449 E		✓	199	100.000

Origin-Destination Data

Demand (Veh/hr)

	То								
		A - R449 W	B - Site Access N	C - R449 E					
From	A - R449 W	0	0	585					
FIOIII	B - Site Access N	0	0	0					
	C - R449 E	199	0	0					

Vehicle Mix

	То								
		A - R449 W	B - Site Access N	C - R449 E					
From	A - R449 W	10	10	10					
From	B - Site Access N	10	10	10					
	C - R449 E	10	10	10					

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	503	0.000	0	0.0	0.000	А
C-AB	0	1229	0.000	0	0.0	0.000	А
C-A	150			150			
A-B	0			0			
A-C	440			440			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	473	0.000	0	0.0	0.000	A
C-AB	0	1176	0.000	0	0.0	0.000	А
C-A	179			179			
A-B	0			0			
A-C	526			526			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	432	0.000	0	0.0	0.000	A
C-AB	0	1102	0.000	0	0.0	0.000	A
C-A	219			219			
A-B	0			0			
A-C	644			644			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	432	0.000	0	0.0	0.000	А
C-AB	0	1102	0.000	0	0.0	0.000	А
C-A	219			219			
A-B	0			0			
A-C	644			644			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	473	0.000	0	0.0	0.000	A
C-AB	0	1176	0.000	0	0.0	0.000	A
C-A	179			179			
A-B	0			0			
A-C	526			526			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	503	0.000	0	0.0	0.000	A
C-AB	0	1229	0.000	0	0.0	0.000	A
C-A	150			150			
A-B	0			0			
A-C	440			440			

Proposed Layout - 2020, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Jun	ction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D4	2020	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	689	100.000
B - Site Access N		✓	0	100.000
C - R449 E		✓	800	100.000

Origin-Destination Data

Demand (Veh/hr)

	То				
		A - R449 W	B - Site Access N	C - R449 E	
From	A - R449 W	0	0	689	
From	B - Site Access N	0	0	0	
	C - R449 E	800	0	0	

Vehicle Mix

	То				
		A - R449 W	B - Site Access N	C - R449 E	
From	A - R449 W	10	10	10	
From	B - Site Access N	10	10	10	
	C - R449 E	10	10	10	

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	417	0.000	0	0.0	0.000	A
C-AB	0	1180	0.000	0	0.0	0.000	А
C-A	602			602			
A-B	0			0			
A-C	519			519			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	366	0.000	0	0.0	0.000	A
C-AB	0	1117	0.000	0	0.0	0.000	А
C-A	719			719			
A-B	0			0			
A-C	619			619			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	292	0.000	0	0.0	0.000	A
C-AB	0	1030	0.000	0	0.0	0.000	A
C-A	881			881			
A-B	0			0			
A-C	759			759			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	292	0.000	0	0.0	0.000	А
C-AB	0	1030	0.000	0	0.0	0.000	А
C-A	881			881			
A-B	0			0			
A-C	759			759			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	366	0.000	0	0.0	0.000	A
C-AB	0	1117	0.000	0	0.0	0.000	A
C-A	719			719			
A-B	0			0			
A-C	619			619			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	417	0.000	0	0.0	0.000	A
C-AB	0	1180	0.000	0	0.0	0.000	А
C-A	602			602			
A-B	0			0			
A-C	519			519			

Proposed Layout - 2020 With Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	R449 / Site Access	T-Junction	Two-way	0.93	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	97	Stream B-AC

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D5	2020 With Dev	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	596	100.000
B - Site Access N		✓	58	100.000
C - R449 E		✓	246	100.000

Origin-Destination Data

Demand (Veh/hr)

	То							
		A - R449 W	B - Site Access N	C - R449 E				
From	A - R449 W	0	11	585				
From	B - Site Access N	11	0	47				
	C - R449 E	199	47	0				

Vehicle Mix

	То							
		A - R449 W	B - Site Access N	C - R449 E				
From	A - R449 W	10	10	10				
From	B - Site Access N	10	10	10				
	C - R449 E	10	10	10				

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.13	8.57	0.2	А
C-AB	0.09	7.27	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	44	555	0.079	43	0.1	7.027	A
C-AB	35	612	0.058	35	0.1	6.236	А
C-A	150			150			
A-B	8			8			
A-C	440			440			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	52	526	0.099	52	0.1	7.599	А
C-AB	42	585	0.072	42	0.1	6.635	А
C-A	179			179			
A-B	10			10			
A-C	526			526			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	64	484	0.132	64	0.2	8.558	A
C-AB	52	547	0.095	52	0.1	7.265	A
C-A	219			219			
A-B	12			12			
A-C	644			644			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	64	484	0.132	64	0.2	8.567	А
C-AB	52	547	0.095	52	0.1	7.268	А
C-A	219			219			
A-B	12			12			
A-C	644			644			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	52	526	0.099	52	0.1	7.610	A
C-AB	42	585	0.072	42	0.1	6.640	A
C-A	179			179			
A-B	10			10			
A-C	526			526			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	44	555	0.079	44	0.1	7.041	A
C-AB	35	612	0.058	35	0.1	6.243	A
C-A	150			150			
A-B	8			8			
A-C	440			440			

Proposed Layout - 2020 With Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Ju	unction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.19	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	42	Stream B-AC

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D6	2020 With Dev	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Arm Linked arm		Average Demand (Veh/hr)	Scaling Factor (%)	
A - R449 W		~	692	100.000	
B - Site Access N		✓	21	100.000	
C - R449 E		✓	812	100.000	

Origin-Destination Data

Demand (Veh/hr)

	То						
		A - R449 W	B - Site Access N	C - R449 E			
From	A - R449 W	0	3	689			
From	B - Site Access N	4	0	17			
	C - R449 E	800	12	0			

Vehicle Mix

	То						
		A - R449 W	B - Site Access N	C - R449 E			
From	A - R449 W	10	10	10			
From	B - Site Access N	10	10	10			
	C - R449 E	10	10	10			

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.06	9.79	0.1	А
C-AB	0.03	7.19	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	16	503	0.031	16	0.0	7.390	А
C-AB	9	589	0.015	9	0.0	6.202	А
C-A	602			602			
A-B	2			2			
A-C	519			519			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	19	458	0.041	19	0.0	8.189	А
C-AB	11	558	0.019	11	0.0	6.582	А
C-A	719			719			
A-B	3			3			
A-C	619			619			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	23	391	0.059	23	0.1	9.785	A
C-AB	13	514	0.026	13	0.0	7.191	A
C-A	881			881			
A-B	3			3			
A-C	759			759			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	23	391	0.059	23	0.1	9.789	А
C-AB	13	514	0.026	13	0.0	7.191	А
C-A	881			881			
A-B	3			3			
A-C	759			759			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	19	458	0.041	19	0.0	8.194	A
C-AB	11	558	0.019	11	0.0	6.585	A
C-A	719			719			
A-B	3			3			
A-C	619			619			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	16	503	0.031	16	0.0	7.397	A
C-AB	9	589	0.015	9	0.0	6.202	A
C-A	602			602			
A-B	2			2			
A-C	519			519			

Proposed Layout - 2025, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

[Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D7	2025	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	627	100.000
B - Site Access N		✓	0	100.000
C - R449 E		✓	213	100.000

Origin-Destination Data

Demand (Veh/hr)

	То										
		A - R449 W	B - Site Access N	C - R449 E							
From	A - R449 W	0	0	627							
From	B - Site Access N	0	0	0							
	C - R449 E	213	0	0							

Vehicle Mix

	То									
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	10	10	10						
From	B - Site Access N	10	10	10						
	C - R449 E	10	10	10						

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	492	0.000	0	0.0	0.000	A
C-AB	0	1210	0.000	0	0.0	0.000	A
C-A	160			160			
A-B	0			0			
A-C	472			472			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	460	0.000	0	0.0	0.000	A
C-AB	0	1152	0.000	0	0.0	0.000	А
C-A	191			191			
A-B	0			0			
A-C	564			564			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	416	0.000	0	0.0	0.000	А
C-AB	0	1072	0.000	0	0.0	0.000	А
C-A	235			235			
A-B	0			0			
A-C	690			690			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	416	0.000	0	0.0	0.000	А
C-AB	0	1072	0.000	0	0.0	0.000	А
C-A	235			235			
A-B	0			0			
A-C	690			690			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	460	0.000	0	0.0	0.000	A
C-AB	0	1152	0.000	0	0.0	0.000	A
C-A	191			191			
A-B	0			0			
A-C	564			564			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	492	0.000	0	0.0	0.000	A
C-AB	0	1210	0.000	0	0.0	0.000	A
C-A	160			160			
A-B	0			0			
A-C	472			472			

Proposed Layout - 2025, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

[Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

l	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
	Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D8	2025	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	739	100.000
B - Site Access N		✓	0	100.000
C - R449 E		✓	858	100.000

Origin-Destination Data

Demand (Veh/hr)

	То									
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	0	0	739						
From	B - Site Access N	0	0	0						
	C - R449 E	858	0	0						

Vehicle Mix

	То									
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	10	10	10						
From	B - Site Access N	10	10	10						
	C - R449 E	10	10	10						

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	398	0.000	0	0.0	0.000	A
C-AB	0	1157	0.000	0	0.0	0.000	A
C-A	646			646			
A-B	0			0			
A-C	556			556			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	343	0.000	0	0.0	0.000	A
C-AB	0	1089	0.000	0	0.0	0.000	А
C-A	771			771			
A-B	0			0			
A-C	664			664			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	260	0.000	0	0.0	0.000	A
C-AB	0	995	0.000	0	0.0	0.000	A
C-A	945			945			
A-B	0			0			
A-C	814			814			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	260	0.000	0	0.0	0.000	А
C-AB	0	995	0.000	0	0.0	0.000	А
C-A	945			945			
A-B	0			0			
A-C	814			814			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	343	0.000	0	0.0	0.000	A
C-AB	0	1089	0.000	0	0.0	0.000	A
C-A	771			771			
A-B	0			0			
A-C	664			664			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	398	0.000	0	0.0	0.000	А
C-AB	0	1157	0.000	0	0.0	0.000	А
C-A	646			646			
A-B	0			0			
A-C	556			556			

Proposed Layout - 2025 With Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	R449 / Site Access	T-Junction	Two-way	0.91	А

Junction Network Options

Driving	g side	Lighting	Network residual capacity (%)	First arm reaching threshold
Le	ft	Normal/unknown	87	Stream B-AC

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D9	2025 With Dev	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	638	100.000
B - Site Access N		✓	58	100.000
C - R449 E		✓	260	100.000

Origin-Destination Data

Demand (Veh/hr)

	То								
		A - R449 W	B - Site Access N	C - R449 E					
From	A - R449 W	0	11	627					
From	B - Site Access N	11	0	47					
	C - R449 E	213	47	0					

Vehicle Mix

	То								
		A - R449 W	B - Site Access N	C - R449 E					
From	A - R449 W	10	10	10					
From	B - Site Access N	10	10	10					
	C - R449 E	10	10	10					

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.14	8.90	0.2	А
C-AB	0.10	7.49	0.1	А
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	44	545	0.080	43	0.1	7.174	A
C-AB	35	602	0.059	35	0.1	6.345	A
C-A	160			160			
A-B	8			8			
A-C	472			472			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	52	513	0.102	52	0.1	7.808	A
C-AB	42	573	0.074	42	0.1	6.783	А
C-A	191			191			
A-B	10			10			
A-C	564			564			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	64	468	0.136	64	0.2	8.893	A
C-AB	52	532	0.097	52	0.1	7.485	A
C-A	235			235			
A-B	12			12			
A-C	690			690			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	64	468	0.136	64	0.2	8.901	А
C-AB	52	532	0.097	52	0.1	7.488	A
C-A	235			235			
A-B	12			12			
A-C	690			690			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	52	513	0.102	52	0.1	7.819	A
C-AB	42	573	0.074	42	0.1	6.786	A
C-A	191			191			
A-B	10			10			
A-C	564			564			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	44	545	0.080	44	0.1	7.186	A
C-AB	35	602	0.059	35	0.1	6.352	A
C-A	160			160			
A-B	8			8			
A-C	472			472			

Proposed Layout - 2025 With Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

•	Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.19	A

Junction Network Options

Driving sid	e Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	33	Stream B-AC

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D10	2025 With Dev	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	742	100.000
B - Site Access N		✓	21	100.000
C - R449 E		✓	870	100.000

Origin-Destination Data

Demand (Veh/hr)

	То					
		A - R449 W	B - Site Access N	C - R449 E		
From	A - R449 W	0	3	739		
From	B - Site Access N	4	0	17		
	C - R449 E	858	12	0		

Vehicle Mix

	То				
		A - R449 W	B - Site Access N	C - R449 E	
From	A - R449 W	10	10	10	
From	B - Site Access N	10	10	10	
	C - R449 E	10	10	10	

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.06	10.65	0.1	В
C-AB	0.03	7.45	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	16	487	0.032	16	0.0	7.642	А
C-AB	9	578	0.016	9	0.0	6.331	А
C-A	646			646			
A-B	2			2			
A-C	556			556			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	19	438	0.043	19	0.0	8.590	A
C-AB	11	544	0.020	11	0.0	6.756	А
C-A	771			771			
A-B	3			3			
A-C	664			664			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	23	361	0.064	23	0.1	10.642	В
C-AB	13	496	0.027	13	0.0	7.448	A
C-A	945			945			
A-B	3			3			
A-C	814			814			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	23	361	0.064	23	0.1	10.647	В
C-AB	13	496	0.027	13	0.0	7.448	А
C-A	945			945			
A-B	3			3			
A-C	814			814			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	19	438	0.043	19	0.0	8.597	A
C-AB	11	544	0.020	11	0.0	6.757	A
C-A	771			771			
A-B	3			3			
A-C	664			664			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	16	487	0.032	16	0.0	7.647	A
C-AB	9	578	0.016	9	0.0	6.333	A
C-A	646			646			
A-B	2			2			
A-C	556			556			

Proposed Layout - 2035, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D11	2035	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	687	100.000
B - Site Access N		~	0	100.000
C - R449 E		✓	234	100.000

Origin-Destination Data

Demand (Veh/hr)

	То				
From		A - R449 W	B - Site Access N	C - R449 E	
	A - R449 W	0	0	687	
	B - Site Access N	0	0	0	
	C - R449 E	234	0	0	

Vehicle Mix

	То				
From		A - R449 W	B - Site Access N	C - R449 E	
	A - R449 W	10	10	10	
	B - Site Access N	10	10	10	
	C - R449 E	10	10	10	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	476	0.000	0	0.0	0.000	А
C-AB	0	1181	0.000	0	0.0	0.000	A
C-A	176			176			
A-B	0			0			
A-C	517			517			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	441	0.000	0	0.0	0.000	А
C-AB	0	1118	0.000	0	0.0	0.000	А
C-A	210			210			
A-B	0			0			
A-C	618			618			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	392	0.000	0	0.0	0.000	A
C-AB	0	1031	0.000	0	0.0	0.000	A
C-A	258			258			
A-B	0			0			
A-C	756			756			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	392	0.000	0	0.0	0.000	А
C-AB	0	1031	0.000	0	0.0	0.000	А
C-A	258			258			
A-B	0			0			
A-C	756			756			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	441	0.000	0	0.0	0.000	A
C-AB	0	1118	0.000	0	0.0	0.000	A
C-A	210			210			
A-B	0			0			
A-C	618			618			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	476	0.000	0	0.0	0.000	A
C-AB	0	1181	0.000	0	0.0	0.000	A
C-A	176			176			
A-B	0			0			
A-C	517			517			

Proposed Layout - 2035, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Jur	nction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.00	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	900	

Traffic Demand

Demand Set Details

ID	Scenario	Time Period	Traffic profile	Start time	Finish time	Time segment length
	name	name	type	(HH:mm)	(HH:mm)	(min)
D12	2035	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	810	100.000
B - Site Access N		✓	0	100.000
C - R449 E		✓	940	100.000

Origin-Destination Data

Demand (Veh/hr)

	То							
		A - R449 W	B - Site Access N	C - R449 E				
From	A - R449 W	0	0	810				
From	B - Site Access N	0	0	0				
	C - R449 E	940	0	0				

Vehicle Mix

Heavy Vehicle Percentages

	То							
		A - R449 W	B - Site Access N	C - R449 E				
From	A - R449 W	10	10	10				
From	B - Site Access N	10	10	10				
	C - R449 E	10	10	10				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	371	0.000	0	0.0	0.000	А
C-AB	0	1123	0.000	0	0.0	0.000	А
C-A	708			708			
A-B	0			0			
A-C	610			610			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	309	0.000	0	0.0	0.000	А
C-AB	0	1049	0.000	0	0.0	0.000	А
C-A	845			845			
A-B	0			0			
A-C	728			728			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	213	0.000	0	0.0	0.000	A
C-AB	0	946	0.000	0	0.0	0.000	A
C-A	1035			1035			
A-B	0			0			
A-C	892			892			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	213	0.000	0	0.0	0.000	А
C-AB	0	946	0.000	0	0.0	0.000	А
C-A	1035			1035			
A-B	0			0			
A-C	892			892			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	309	0.000	0	0.0	0.000	A
C-AB	0	1049	0.000	0	0.0	0.000	A
C-A	845			845			
A-B	0			0			
A-C	728			728			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	0	371	0.000	0	0.0	0.000	A
C-AB	0	1123	0.000	0	0.0	0.000	A
C-A	708			708			
A-B	0			0			
A-C	610			610			

Proposed Layout - 2035 With Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Jun	oction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.88	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	73	Stream B-AC

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D13	2035 With Dev	AM	ONE HOUR	07:45	09:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)
✓	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)	
A - R449 W		~	698	100.000	
B - Site Access N		✓	58	100.000	
C - R449 E		✓	281	100.000	

Origin-Destination Data

Demand (Veh/hr)

	То							
		A - R449 W	B - Site Access N	C - R449 E				
From	A - R449 W	0	11	687				
FIOIII	B - Site Access N	11	0	47				
	C - R449 E	234	47	0				

Vehicle Mix

Heavy Vehicle Percentages

	То						
		A - R449 W	B - Site Access N	C - R449 E			
From	A - R449 W	10	10	10			
From	B - Site Access N	10	10	10			
	C - R449 E	10	10	10			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.14	9.43	0.2	А
C-AB	0.10	7.83	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	44	530	0.082	43	0.1	7.396	А
C-AB	35	588	0.060	35	0.1	6.508	А
C-A	176			176			
A-B	8			8			
A-C	517			517			

08:00 - 08:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	52	495	0.105	52	0.1	8.129	А
C-AB	42	556	0.076	42	0.1	7.006	А
C-A	210			210			
A-B	10			10			
A-C	618			618			

08:15 - 08:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	64	446	0.143	64	0.2	9.422	A
C-AB	52	512	0.101	52	0.1	7.823	A
C-A	258			258			
A-B	12			12			
A-C	756			756			

08:30 - 08:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	64	446	0.143	64	0.2	9.431	А
C-AB	52	512	0.101	52	0.1	7.826	А
C-A	258			258			
A-B	12			12			
A-C	756			756			

08:45 - 09:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	52	495	0.105	52	0.1	8.141	A
C-AB	42	556	0.076	42	0.1	7.012	A
C-A	210			210			
A-B	10			10			
A-C	618			618			

09:00 - 09:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	44	530	0.082	44	0.1	7.412	A
C-AB	35	588	0.060	35	0.1	6.515	A
C-A	176			176			
A-B	8			8			
A-C	517			517			

Proposed Layout - 2035 With Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Jun	ction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
	1	R449 / Site Access	T-Junction	Two-way	0.20	А

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	21	Stream B-AC

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D14	2035 With Dev	PM	ONE HOUR	17:45	19:15	15

Default vehicle mix	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
A - R449 W		~	813	100.000
B - Site Access N		✓	21	100.000
C - R449 E		✓	952	100.000

Origin-Destination Data

Demand (Veh/hr)

	То										
		A - R449 W	B - Site Access N	C - R449 E							
From	A - R449 W	0	3	810							
From	B - Site Access N	4	0	17							
	C - R449 E	940	12	0							

Vehicle Mix

Heavy Vehicle Percentages

	То									
		A - R449 W	B - Site Access N	C - R449 E						
From	A - R449 W	10	10	10						
From	B - Site Access N	10	10	10						
	C - R449 E	10	10	10						

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (Veh)	Max LOS
B-AC	0.07	12.37	0.1	В
C-AB	0.03	7.85	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

17:45 - 18:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	16	463	0.034	16	0.0	8.040	A
C-AB	9	561	0.016	9	0.0	6.523	A
C-A	708			708			
A-B	2			2			
A-C	610			610			

18:00 - 18:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	19	407	0.046	19	0.0	9.269	А
C-AB	11	524	0.021	11	0.0	7.020	А
C-A	845			845			
A-B	3			3			
A-C	728			728			

18:15 - 18:30

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	23	314	0.074	23	0.1	12.361	В
C-AB	13	472	0.028	13	0.0	7.847	A
C-A	1035			1035			
A-B	3			3			
A-C	892			892			

18:30 - 18:45

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	23	314	0.074	23	0.1	12.371	В
C-AB	13	472	0.028	13	0.0	7.847	А
C-A	1035			1035			
A-B	3			3			
A-C	892			892			

18:45 - 19:00

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	19	407	0.046	19	0.0	9.276	A
C-AB	11	524	0.021	11	0.0	7.021	A
C-A	845			845			
A-B	3			3			
A-C	728			728			

19:00 - 19:15

Stream	Total Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	End queue (Veh)	Delay (s)	LOS
B-AC	16	463	0.034	16	0.0	8.047	А
C-AB	9	561	0.016	9	0.0	6.526	А
C-A	708			708			
A-B	2			2			
A-C	610			610			

Proposed Celbridge Civic Amenity Centre

Trip Generation Technical Note

February 2019

Quality information Prepared by

Prepared by	Checked by	Approved by
Justin McHenry	Brian McMahon	Brian McMahon

Revision History

Revision	Revision date	Details	Authorised	Name	Position
1	21.02.2019	Planning Submission	BMc	Brian McMahon	Principal Engineer

Prepared for: Kildare County Council/ Donnachadh O' Brien

Prepared by: Justin McHenry Consultant

AECOM Ireland Limited 4th Floor Adelphi Plaza Georges Street Upper Dun Laoghaire Co. Dublin A96 T927 Ireland

T: +353 1 238 3100 aecom.com

© 2018 AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Introc	luction
2.	Site D	etails
3.	Trip G	eneration Methodology
4.	Backg	round to Analysis Sites
	4.1	Blackburn- TRICS Site Number: LC-12-A-04
	4.2	Cheshire- TRICS Site Number: CH-12-A-01
	4.3	Worchester - TRICS Site Number: WO-12-A-02
	4.4	Edinburgh- TRICS Site Number: EB-12-A-02
	4.5	Leeds- TRICS Site Number: WY-12-A-01
	4.6	Limerick- TRICS Site Number: LI-12-A-01
	4.7	Ballyogan14
5.	TRICS	Trip Generation Site Statistics
	5.1	Blackburn- TRICS Site Number: LC-12-A-0415
	5.2	Cheshire- TRICS Site Number: CH-12-A-01
	5.3	Worchester- TRICS Site Number: WO-12-A-02
	5.4	Edinburgh- TRICS Site Number: EB-12-A-02
	5.5	Leeds- TRICS Site Number: WY-12-A-01
	5.6	Limerick- TRICS Site Number: LI-12-A-01
	5.7	Ballyogan
6.	TRICS	and Site Analysis Results
7.	TRICS	Average AM and PM Trip Generation
8.		nd PM Peak Network Trip Generation
9.		nary
	33	

Figures

Figure 1: Proposed Site Location	6
Figure 2: Catchment Area	6
Figure 3: Blackburn Site Location	8
Figure 4: Cheshire Site Location	9
Figure 5: Worchester Site Location	. 10
Figure 6: Edinburgh Site Location	
Figure 7: Leeds Site Location	. 12
Figure 8: Limerick Site Location	. 13
Figure 9: Ballyogan Site Location	. 14
Figure 10: Blackburn: LC-12-A-04 Daily Trips Vehicle Composition	. 16
Figure 11: Cheshire: CH-12-A-01 Daily Trips Vehicle Composition	. 18
Figure 12: Worchester: WO-12-A-02 Daily Trips Vehicle Composition	. 20
Figure 13: Edinburgh: EB-12-A-02 Daily Trips Vehicle Composition	. 22
Figure 14: Leeds: WY-12-A-01 Daily Trips Vehicle Composition	. 24
Figure 15: Limerick: LI-12-A-01 Daily Trips Vehicle Composition	. 26
Figure 16: Total Average Hourly Trip Rates (Six TRICS Sites Accepting and Not Accepting Municipal	
Waste Combined)	. 32
Figure 17: Total Average Hourly Trip Rates (Only Sites Which Accept Municipal Waste)	. 32

Tables

Table 5.1: Blackburn: LC-12-A-04 Daily Trips	15
Table 5.2 Cheshire: CH-12-A-01 Daily Trips	17

Table 5.3: Worchester: WO-12-A-02 Daily Trips	19
Table 5.4: Edinburgh: EB-12-A-02 Daily Trips	21
Table 5.5: Leeds: WY-12-A-01 Daily Trips	
Table 5.6: Limerick: LI-12-A-01 Daily Trips	
Table 5.7: Ballyogan Trip Statistics	27
Table 6.1: Total Trip Rates and Daily Trips Comparison	
Table 7.1: Average Daily AM and PM Trip Rates	29
Table 7.2: Average Daily AM and PM Trip Rates for Sites Which Accept Municipal Waste	30
Table 8.1: Proposed Trip Rates Per Hectare	31
Table 8.2: Proposed Trip Generations	

1. Introduction

This Technical Note has been prepared to assess the potential trip generation for the proposed Celbridge Civic Amenity Centre. The proposed site is to be one hectare in size and accommodate between 5,000 and 7,500 tonnes of waste per year. The proposed site is located on the R449, a link road between the R405 in Celbridge and the R148 in Leixlip which passes via the M4 motorway interchange. The site is approximately 406m from the M4 Business Park and 312m from the M4 interchange, as illustrated by Figure 1.

Figure 1: Proposed Site Location

2. Site Details

The site is expected to deal with between 5,000 and 7,500 tonnes of waste per year. The main catchment areas are to include the local towns of: Kilcock, Maynooth, Leixlip, Celbridge and Clane, with a total combined population of 76,800, and the adjacent areas of Lucan and Palmerstown, with an approximate population of 100,000, as illustrated by Figure 2.

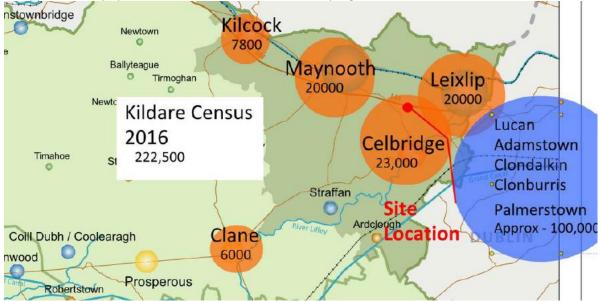


Figure 2: Catchment Area

The Civic Amenity Centre will cater for all waste streams including municipal waste. It is expected that municipal waste will account for some 58% of the waste stream at the Celbridge site. The site is approximately one hectare in size.

3. Trip Generation Methodology

In order to establish the number of trips the proposed development could generate, reference has been made to the latest version of the Trip Rate Information Computer System (TRICS) database to obtain the potential vehicular trip generation rates for the proposed civic amenity centre.

TRICS is an industry standard tool comprising a database of trip rates for developments in Ireland and the United Kingdom for transport planning purposes, specifically to quantify the trip generation of new developments.

The TRICS database was interrogated to identify developments with comparable characteristics to determine the anticipated level of trips that will be generated by the proposed development.

Following appropriate filtering in terms of site area, location and weekday counts, the TRICS database presented six sites for comparison and inclusion within the trip rate calculation:

- Blackburn, Lancashire, England;
- Cheshire, Northwest England;
- Worcester, West Midlands, England;
- Edinburgh, Scotland;
- Leeds, North England; and
- Limerick, Republic of Ireland.

Additionally, the daily traffic counts (daily total number of arrivals and departures) was analysed for a site in Ballyogan, within the Dun Laoghaire- Rathdown County Council district, for further comparison at local scale. This information was also included within the estimated trip rate.

Whilst it is noted that the majority of the above sites included within the assessment are located within the UK, AECOM considers that these sites are appropriate for establishing the number of trips to be generated by the proposed development.

The proposed Celbridge Civic Amenity Centre will accept municipal waste, while the two sites noted above from Ireland do not. Therefore these sites are excluded from our calculation when predicting the proposed trip rates.

We have therefore used the only other five sites from the TRICS database to predict the future trip rate in Celbridge. The five UK sites have trip rates which far exceed those at the two Irish sites, therefore the predicted trip generation is a robust and worst case trip generation for this assessment.

The following sections provide an assessment of the sites included within the TRICS assessment. The results are presented in Sections 5, 6, 7 and 8 with a summary in Section 9.

4. Background to Analysis Sites

4.1 Blackburn- TRICS Site Number: LC-12-A-04

This site is located in an area to the west of Blackburn Town Centre. It serves a population catchment of between 125,001 to 250,000 people within a 5 mile radius.

The site is approximately 0.41 hect and is located in a built-up area of industrial and retail development, with residential streets a bit further to the north and various town centre development further to the east. The site has 21 bays for waste stream loading. The site location is illustrated on Figure 3.

Figure 3: Blackburn Site Location

Materials disposed of at this site include the following:

- Aluminium foil, batteries, bicycles, books, bulky items, cans, car batteries, cardboard, ceramics, cooking oil, electrical goods, fluorescent light bulbs, fridges and freezers, furniture, garden waste, glass, hard plastics, hardcore and rubble, paint, paper, plastic bottles, printer cartridges, soil, fences and wood, scrap metal, shoes, sand, tetrapak cartons, textiles, tins, TV's and monitors, tyres, used engine oil, washing machines, dryers, dishwashers, white goods, timber, and yellow pages¹.
- The site disposes of municipal waste- requires permit².

¹ Source: TRICS Database

² Source: Blackburn with Darwen Council Website: <u>https://blackburn.gov.uk/Pages/Household-waste-and-recycling-centres-permit-terms-and-conditions.aspx</u>

4.2 Cheshire- TRICS Site Number: CH-12-A-01

This site is located in the west of Chester, within the Sealand Industrial Estate area. The site is approximately 0.3 hect with 16 bays for waste disposal. It serves a population catchment of between 125,001 to 250,000 people within a 5 mile radius.

Chester City Football Club is located next to the site, with various industrial developments nearby. There is open land to the south and further to the west. The site location is illustrated on Figure 4.

Figure 4: Cheshire Site Location

Materials disposed of at this site include the following:

- Electrical equipment, plastics, furniture, garden waste, paper, oil, rubble and soil, wood, textiles, batteries, small and large domestic appliances, metal, fluorescent tubes, cans, cardboard and books³.
- The site disposes of municipal waste⁴.

³ Source: TRICS Database

Prepared for: Kildare County Council/ Donnachadh O' Brien

⁴ Source: Cheshire West and Chester Council Website: <u>https://www.cheshirewestandchester.gov.uk/residents/waste-and-recycling/find-a-recycling-centre/Chester%20Recycling%20Centre.aspx</u>

4.3 Worchester - TRICS Site Number: WO-12-A-02

Worchester Civic Amenity Site is located on Horsford Road, Worchester in a suburban area, outside of the Town Centre. It serves a population catchment of between 100,001 and 125,000 people within 5 mile radius and is a 0.52 hect site with 20 waste bays. The site location is illustrated on Figure 5.

Figure 5: Worchester Site Location

Materials disposed of at this site include the following:

- Asbestos, Small Batteries, Books, CDs and DVDs, Cans, Automobile Batteries, Cardboard, Chemicals, Textiles and Shoes, Engine Oil, Fluorescent Tubes, Foil, Fridges and Freezers, Garden Waste, Glass, Low Energy Bulbs, Mobile Phones, Paper, Plastics, Printer Cartridges, Scrap Metal, Soil and Rubble, Televisions, Tyres, Small Electrical Appliances, Wood, General Waste, Gas Bottles⁵.
- This site disposes of municipal waste⁶

⁵ Source: TRICS Database

Prepared for: Kildare County Council/ Donnachadh O' Brien

⁶ Source: Worchesterhire Council Website: <u>http://www.worcestershire.gov.uk/letswasteless/directory_record/4/hallow_road</u>

4.4 Edinburgh- TRICS Site Number: EB-12-A-02

The site is on the edge of Edinburgh and is near the A900 which leads into central Edinburgh. It is approximately 0.62 hect, with 38 bays for waste traffic, and serves a catchment of between 250,001 to 500,000 people within a 5 mile radius. The site location is illustrated on Figure 6.

Figure 6: Edinburgh Site Location

Materials disposed of at this site include the following:

- Books, CD's, DVD's, Videos, Car Batteries, Cardboard, Engine Oil, Fridges, Glass, Green waste, Paper, rubble/Bricks, Scrap metal and Electronic Equipment⁷.
- The site disposes of municipal waste⁸.

4.5 Leeds- TRICS Site Number: WY-12-A-01

This site is located at the north-eastern edge of Leeds, with local routes heading towards various parts of the city and out into the countryside. The site is within an industrial area, with residential streets to the south and west and is approximately 0.73 hect in size. There are 18 waste loading bays and the site serves a population catchment of between 250,001 and 500,000 people within a 5 mile radius. The site location is illustrated on Figure 7.

Figure 7: Leeds Site Location

Materials disposed of at this site include the following:

- Paper, glass, clothing, books, and aluminium cans. No trade waste, chemicals or tyres are allowed⁹.
- The site does not accept municipal waste¹⁰.

⁹ Source: TRICS Database
 ¹⁰ Source: TRICS Database and Leeds Council Website:

https://www.leeds.gov.uk/residents/bins-and-recycling/recycling-sites/east-leeds-household-waste-sorting-site

Prepared for: Kildare County Council/ Donnachadh O' Brien

4.6 Limerick- TRICS Site Number: LI-12-A-01

The site is located out of town, to the west of Limerick. The site is on the N69, which leads to Tralee to the south west of Limerick. The site has 46 bays for waste loading and serves a catchment of between 75,001 and 100,000 people within a 5 mile radius. The site location is illustrated on Figure 8.

Figure 8: Limerick Site Location

Materials disposed of at this site include the following:

- Batteries, Cardboard, Clothing/Footwear, Cans, Electrical Goods, Glass, Fluorescent Tubes/Bulbs, Garden Waste, Gas Cylinders, Paint, Plastics, Paper, Polystyrene, Oil Filters, Scrap Metal, Tetra Packs, Untreated Timber, Waste Oils and White Goods¹¹.
- This site does not accept municipal waste¹².

¹¹ Source: TRICS Database

¹² Source: Limerick Civic Centre Website: <u>http://limerickrecyclingcentres.ie/?page_id=13</u>

Prepared for: Kildare County Council/ Donnachadh O' Brien

4.7 Ballyogan

Ballyogan Civic Amenity Site is located within close proximity to Leopardstown Valley. It is approximately 0.62hect and deals with 7,800 tonnes of waste per year. The Site location is illustrated on Figure 9.

Figure 9: Ballyogan Site Location

Statistics were not available for the site from TRICS and are therefore based on client survey findings from site. As such, figures are not available for hourly trips, instead daily trips are analysed.

Materials disposed of at this site include the following:

- Aluminium Foil Trays, Batteries, Beverage Cans, Beverage Cartons, Books, Car Batteries, Cardboard Cards, Christmas Trees, Clothes and Textiles, Electrical Waste, Fluorescent Tubes, Food Cans, Glass Bottles and Jars, Green Waste, Magazines, Metal, Mobile phone, Newspapers, Paints, Paper, Plastic Bottles, Plastic Film, Plastics other, Print Cartridges. Used Gas Cylinders, Waste Oil, White Polystyrene and Wood.
- This site does not accept municipal waste.

5. TRICS Trip Generation Site Statistics

5.1 Blackburn- TRICS Site Number: LC-12-A-04

The following provides a breakdown of the average daily trips at the Blackburn site during weekday operation. It illustrates that the AM peak, highlighted in blue, is between 11:00 and 12:00 with 144 trips (includes arrivals and departures). The PM peak is then between 12:00 and 13:00, highlighted in green, with 259 trips (includes arrivals and departures).

Time	Arr	Dep	Totals	% of
Period	785	782	1567	Daily Trips
06:00-07:00				
07:00-08:00	4	0	4	3
08:00-09:00	25	23	48	5
09:00-10:00	35	36	71	9
10:00-11:00	71	72	143	9
11:00-12:00	72	72	144	17
12:00-13:00	144	115	259	15
13:00-14:00	107	127	234	12
14:00-15:00	113	76	189	15
15:00-16:00	111	128	239	12
16:00-17:00	81	100	181	2
17:00-18:00	15	22	37	1
18:00-19:00	7	11	18	3
19:00-20:00				

Table 5.1: Blackburn: LC-12-A-04 Daily Trips

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is relatively low with only 5% of total daily trips. The trip generation during the PM network peak (18:00 - 19:00) is also extremely low with only 3% of total daily trips. The network peaks are highlighted in purple.

The following then also provides a breakdown of the vehicle composition for average daily trips at the Blackburn site during weekday operation. It illustrates private motor cars account for 96% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

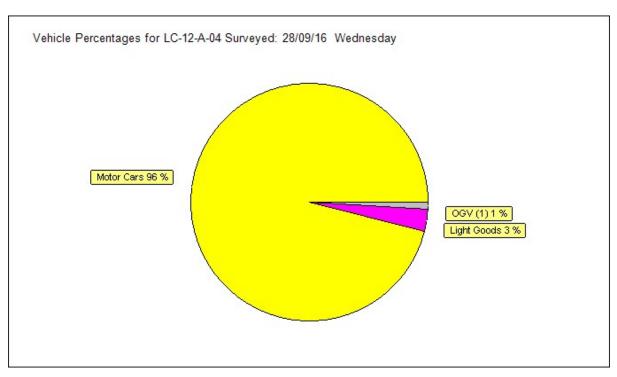


Figure 10: Blackburn: LC-12-A-04 Daily Trips Vehicle Composition

5.2 Cheshire- TRICS Site Number: CH-12-A-01

The following provides a breakdown of the average daily trips at the Cheshire site during weekday operation. It illustrates that the AM peak, highlighted in blue, is between 10:00 and 11:00 with 116 trips (includes arrivals and departures). The PM peak is then between 14:00 and 15:00, highlighted in green, with 129 trips (includes arrivals and departures).

Time	Arr	Dep	Totals	% of Daily
Period	408	409	817	Trips
06:00-07:00				
07:00-08:00	5	4	9	5
08:00-09:00	20	20	40	10
09:00-10:00	42	40	82	14
10:00-11:00	58	58	116	13
11:00-12:00	54	52	106	14
12:00-13:00	56	58	114	14
13:00-14:00	56	56	112	16
14:00-15:00	65	64	129	13
15:00-16:00	51	56	107	0
16:00-17:00	1	1	2	5
17:00-18:00				
18:00-19:00				

Table 5.2 Cheshire: CH-12-A-01 Daily Trips

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is relatively low with only 10% of total daily trips. The trip generation during the PM network peak (18:00 - 19:00) is not available for this site as it exceeds the site's opening hours (closes at 17:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Cheshire site during weekday operation. It illustrates private motor cars account for 92% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

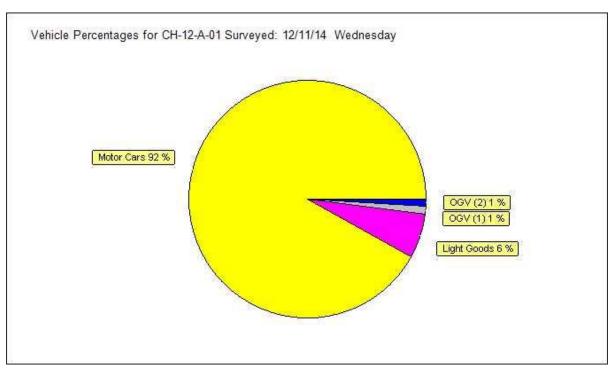
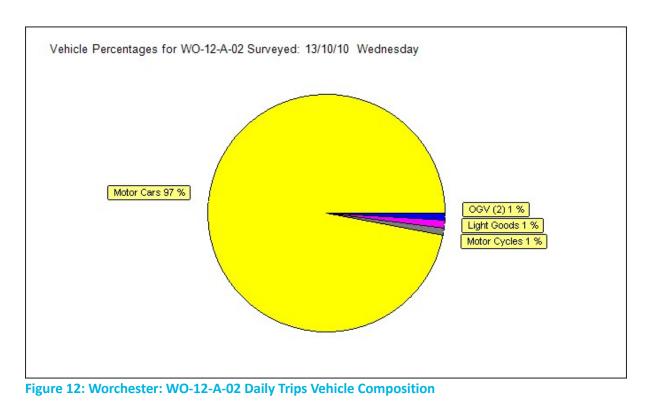


Figure 11: Cheshire: CH-12-A-01 Daily Trips Vehicle Composition

5.3 Worchester- TRICS Site Number: WO-12-A-02


The following provides a breakdown of the average daily trips at the Worchester site during weekday operation. It illustrates that the AM peak is between 11:00 and 12:00, highlighted in blue, with 152 trips (includes arrivals and departures). The PM peak is then between 12:00 and 13:00, highlighted in green, with 58 trips (includes arrivals and departures).

Time	Arr	Dep	Totals	% of Daily
Period	279	286	565	Trips
07:00-08:00				
08:00-09:00	35	38	73	13
09:00-10:00	61	54	115	20
10:00-11:00	72	71	143	25
11:00-12:00	77	75	152	27
12:00-13:00	27	31	58	10
13:00-14:00	4	11	15	3
14:00-15:00	2	1	3	1
15:00-16:00	1	3	4	1
16:00-17:00	0	2	2	0
17:00-18:00				
18:00-19:00				

Table 5.3: Worchester: WO-12-A-02 Daily Trips

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is relatively low with only 13% of total daily trips. The trip generation during the PM network peak (18:00 - 19:00) is not available for this site as it exceeds the site's opening hours (closes at 17:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Worchester site during weekday operation. It illustrates private motor cars account for 97% of daily trips and therefore the site does not add significant HGV pressure on existing road networks

5.4 Edinburgh- TRICS Site Number: EB-12-A-02

The following provides a breakdown of the average daily trips at the Edinburgh site during weekday operation. It illustrates that the AM peak is between 10:00 and 11:00, highlighted in blue, with 73 trips (includes arrivals and departures). The PM peak is then between 14:00 and 15:00, highlighted in green, with 90 trips (includes arrivals and departures).

Time Period	Arr 293	Dep 293	Totals 586	% of Daily Trips
06:00-07:00	295	295	500	
07:00-08:00	6	2	8	1
08:00-09:00	9	9	18	3
09:00-10:00	27	21	48	8
10:00-11:00	35	38	73	12
11:00-12:00	37	34	71	12
12:00-13:00	27	27	54	9
13:00-14:00	38	36	74	13
14:00-15:00	45	45	90	15
15:00-16:00	39	42	81	14
16:00-17:00	12	17	29	5
17:00-18:00	10	11	21	4
18:00-19:00	8	11	19	3
19:00-20:00				

Table 5.4: Edinburgh: EB-12-A-02 Daily Trips

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is extremely low with only 3% of total daily trips. The trip generation during the PM network peak (18:00 - 19:00) is also extremely low with only 3% of total daily trips. The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Edinburgh site during weekday operation. It illustrates private motor cars account for 77% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

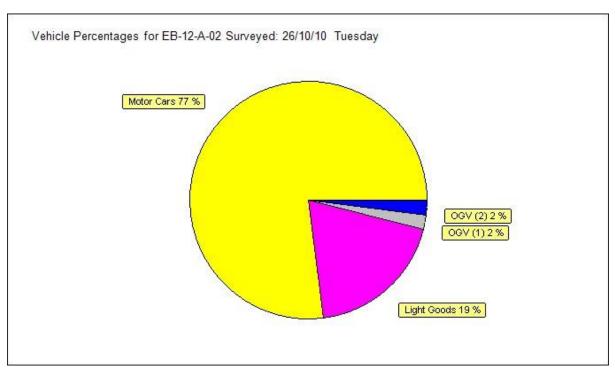


Figure 13: Edinburgh: EB-12-A-02 Daily Trips Vehicle Composition

5.5 Leeds- TRICS Site Number: WY-12-A-01

The following provides a breakdown of the average daily trips at the Leeds site during weekday operation. It illustrates that the AM peak is between 09:00 and 10:00, highlighted in blue, with 46 trips (includes arrivals and departures). The PM peak is then between 13:00 and 14:00, highlighted in green, with 48 trips (includes arrivals and departures).

Time	Arr	Dep	Totals	% of Daily
Period	173	176	349	Trips
06:00-07:00				
07:00-08:00	10	8	18	5
08:00-09:00	9	9	18	5
09:00-10:00	23	23	46	13
10:00-11:00	15	16	31	9
11:00-12:00	22	20	42	12
12:00-13:00	23	23	46	13
13:00-14:00	24	24	48	14
14:00-15:00	15	15	30	9
15:00-16:00	22	24	46	13
16:00-17:00	10	12	22	6
17:00-18:00	0	2	2	1
18:00-19:00				

Table 5.5: Leeds: WY-12-A-01 Daily Trips

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is relatively low with only 5% of total daily trips. The trip generation during the PM network peak (18:00 - 19:00) is not available for this site as it exceeds the site's opening hours (closes at 18:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Leeds site during weekday operation. It illustrates private motor cars account for 87% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

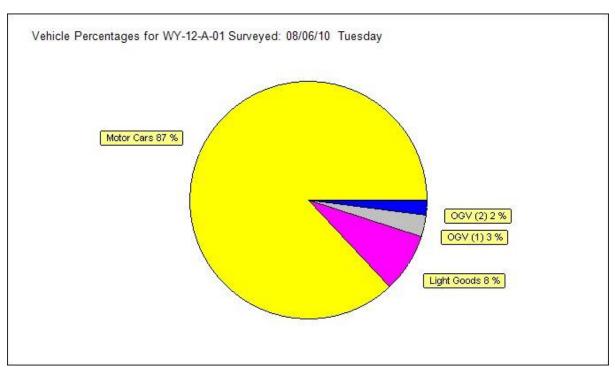


Figure 14: Leeds: WY-12-A-01 Daily Trips Vehicle Composition

5.6 Limerick- TRICS Site Number: LI-12-A-01

The following provides a breakdown of the average daily trips at the Limerick site during weekday operation. It illustrates that the AM peak is between 09:00 and 10:00, highlighted in blue, with 37 trips (includes arrivals and departures). The PM peak is then between 12:00 and 13:00, highlighted in green, with 26 trips (includes arrivals and departures).

Time	Arr	Dep	Totals	% of Daily Trips
Period	<mark>98</mark>	98	196	
07:00-08:00				
08:00-09:00				
09:00-10:00	19	18	37	19
10:00-11:00	14	13	27	14
11:00-12:00	16	15	31	16
12:00-13:00	14	12	26	13
13:00-14:00	9	10	19	10
14:00-15:00	7	7	14	7
15:00-16:00	8	4	12	6
16:00-17:00	11	14	25	13
17:00-18:00	0	5	5	3
18:00-19:00				

Table 5.6: Limerick: LI-12-A-01 Daily Trips

18:00-19:00

It must be noted that the trip generation during the AM network peak (08:00 - 09:00) is not available for the site as it is outside the site's opening hours (opens at 09:00). The trip generation during the PM network peak (18:00 - 19:00) is also not available for this site as it exceeds the site's opening hours (closes at 18:00). The network peaks are highlighted in purple.

The following provides a breakdown of the vehicle composition for average daily trips at the Limerick site during weekday operation. It illustrates private motor cars account for 87% of daily trips and therefore the site does not add significant HGV pressure on existing road networks.

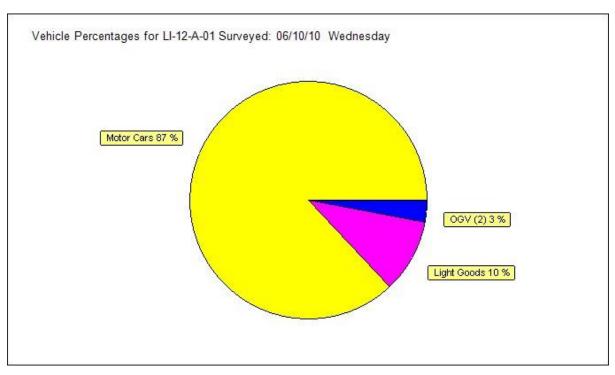


Figure 15: Limerick: LI-12-A-01 Daily Trips Vehicle Composition

5.7 Ballyogan

Statistics were not available for the site at Ballyogan from TRICs and are therefore based on the operator's survey findings from site. As such, statistics are not available for hourly trips, instead daily trips are analysed. This is illustrated on Table 5.7.

Table 5.7: Ballyogan Trip Statistics

Details	Statistic
Total Daily Trip for Weekdays	50,967
Operational Days	215
Average Arrivals to site Per Operational Weekday	237.06
Average Departures from site Per Operational Weekday	237.06
Total Trips to and from site per Weekday	474

These statistics are incorporated into an analysis in Section 6 to illustrate how Ballyogan, a site within the Greater Dublin area, compares to the average civic amenity centre daily trips.

6. TRICS and Site Analysis Results

Table 6.1 provides a calculated, ranked, comparison table for each of the sites average daily trip rate and trip total generation statistics. Daily trip statistics where used as the basis for comparison as this provided the best opportunity to compare available traffic statistics with a local site: Ballyogan.

Table 6.1: Total Trip Rates and Daily Trips Comparison

Rank	Site Ref	Mun. Waste	Description	Location	Area	Arrivals (Daily Trip Rate)	Depart (Daily Trip Rate)	Total Trip Daily Rate	Arr	Dep	Total Daily Trip Generation
1	LC-	Yes-	RECYCLING	BLACKB	0.41	1790.24	1770.7	3561.0	734	726	1460
	12-	Permit	CENTRE	URN		4	32				
	A-04										
2	CH-	Yes	RECYCLING	CHESHIR	0.3	1276.66	1283.3	2560.0	383	385	768
	12-		CENTRE	E		7	33				
	A-01										
3	WO-	Yes	CIVIC	WORCES	0.21	1161.90	1180.9	2342.9	244	248	492
	12-		AMENITY	TER		5	52				
	A-02										
4	EB-	Yes	RECYCLING	EDINBUR	0.62	419.355	419.35	838.7	260	260	520
	12-		CENTRE	GH			5				
	A-02										
5	BALL	No	CIVIC	DUN	0.62	382.26	382.26	764.52	237	237	474
	Y-		AMENITY	LAOGHA							
	OGA N			IRE							
6	WY- 12-A-	No	CIVIC AMENITY	LEEDS	0.73	210.959	215.06 8	426.0	154	157	311
	01		SITE				0				
		Ne			0.52	100 402	170.04	267.2	00	02	101
7	LI- 12-A-	No	RECYCLING CENTRE	NEAR LIMERIC	0.52	188.462	178.84 6	367.3	98	93	191
	01		<u>ULITICE</u>	K			v				

Based on the findings in Table 6.1, the four sites which accept municipal waste are ranked higher than the three sites that do not accept municipal waste. Therefore to get a robust and worst case trip generation the Leeds and Limerick sites should be removed from the list of sites.

7. TRICS Average AM and PM Trip Generation

Table 7.1 presents a calculated AM and PM trip rate of arrivals and departures throughout an average weekday for all six TRICS sites.

Time Range	Days	Ave. Area	Arrival Trip Rate	No. Days	Ave. Area	Departures Trip Rate	No. Days	Ave. Area	Total Trip Rate
06:00-07:00									
07:00-08:00	4	0.51	12.136	4	0.51	6.796	4	0.51	18.932
08:00-09:00	6	0.47	35.125	6	0.47	35.484	6	0.47	70.609
09:00-10:00	6	0.47	74.194	6	0.47	68.817	6	0.47	143.011
10:00-11:00	6	0.47	94.982	6	0.47	96.057	6	0.47	191.039
11:00-12:00	6	0.47	99.642	6	0.47	96.057	6	0.47	195.699
12:00-13:00	6	0.47	104.301	6	0.47	95.341	6	0.47	199.642
13:00-14:00	6	0.47	85.305	6	0.47	94.624	6	0.47	179.929
14:00-15:00	6	0.47	88.53	6	0.47	74.552	6	0.47	163.082
15:00-16:00	6	0.47	83.154	6	0.47	92.115	6	0.47	175.269
16:00-17:00	6	0.47	41.219	6	0.47	52.33	6	0.47	93.549
17:00-18:00	5	0.5	10.04	5	0.5	16.064	5	0.5	26.104
18:00-19:00	2	0.52	14.563	2	0.52	21.359	2	0.52	35.922
19:00-20:00									
Daily Trip Ra	tes:		743.191			749.596			1492.787

Table 7.1: Average Daily AM and PM Trip Rates(One Hectare Calculation Factor)

In order to then provide a robust daily trip generation assessment for the Celbridge site, an assessment is also provided in Table 7.2 that is based only on sites which accept municipal waste: Blackburn, Cheshire, Worchester, and Edinburgh. This ensures that the assessment presents findings most comparable to the average daily trip generation Celbridge can expect due to its accepted waste streams.

Time Range	Days	Ave.	Arrival	No.	Ave.	Departures	No.	Ave.	Total Trip
		Area	Trip Rate	Days	Area	Trip Rate	Days	Area	Rate
06:00-07:00									
07:00-08:00	3	0.44	11.278	3	0.44	4.511	3	0.44	15.789
08:00-09:00	4	0.38	57.792	4	0.38	58.442	4	0.38	116.234
09:00-10:00	4	0.38	107.143	4	0.38	98.052	4	0.38	205.195
10:00-11:00	4	0.38	153.247	4	0.38	155.195	4	0.38	308.442
11:00-12:00	4	0.38	155.844	4	0.38	151.299	4	0.38	307.143
12:00-13:00	4	0.38	164.935	4	0.38	150	4	0.38	314.935
13:00-14:00	4	0.38	133.117	4	0.38	149.351	4	0.38	282.468
14:00-15:00	4	0.38	146.104	4	0.38	120.779	4	0.38	266.883
15:00-16:00	4	0.38	131.169	4	0.38	148.701	4	0.38	279.87
16:00-17:00	4	0.38	61.039	4	0.38	77.922	4	0.38	138.961
17:00-18:00	3	0.41	20.161	3	0.41	26.613	3	0.41	46.774
18:00-19:00	2	0.52	14.563	2	0.52	21.359	2	0.52	35.922
19:00-20:00									
Daily Trip Rates:			1156.392			1162.224			2318.616

Table 7.2: Average Daily AM and PM Trip Rates for Sites Which Accept Municipal Waste(One Hectare Calculation Factor)

8. AM And PM Peak Network Trip Generation

The latest version of the Trip Rate Information Computer System (TRICS v 7.5.2) was used to calculate the quantum of vehicle trips likely to be generated by a development of the scale and type proposed – 1 hectare. The full outputs from the TRICS analysis is shown in Table 7.2, whilst the trip rates and the resulting trip generations for the peak periods are illustrated in Tables 8.1 and 8.2 below.

Table 8.1: Proposed Trip Rates Per Hectare

Development	TRICs Land	AM Peak Hour	(08:00 – 09:00)	PM Peak Hour (18:00 – 19:00)		
	Use	Arrivals	Departures	Arrivals	Departures	
Civic Amenity Centre	07 V - Library	57.792	58.442	14.563	21.359	

Table 8.2: Proposed Trip Generations

Development	Development Size		Peak Hour 0 – 09:00)	PM Peak Hour (18:00 – 19:00)		
	5120	Arrivals	Departures	Arrivals	Departures	
Civic Amenity Centre	1 hectare	58	58	15	21	
Peak Hour To		116	36			

Table 8.2 demonstrates that the anticipated trip generations associated with the development are 116 and 36 trips respectively during the morning (08:00 - 09:00) and evening (18:00 - 19:00) peak hour periods.

9. Summary

Summarising the above analysis, a number of key trends have become apparent that will provide useful technical information in relation to the Celbridge Civic Amenity Centre proposal.

To begin with, it is of significant note that average trends indicate that the AM peak for civic amenity sites (accepting and not accepting municipal waste combined) is between 11:00 and 12:00, as highlighted in blue on Table 7.1, with a trip rate of 195.70. The PM peak of between 12:00 and 13:00, as highlighted in green in Table 7.1, has a trip rate of 199.64. These development peaks are outside of Celbridge's network AM peak (08:00 -09:00) and PM peak (18:00 – 19:00) hours. Figure 16 plots the combined total hourly trip rates for the six combined TRICS sites to illustrate development trip generation.

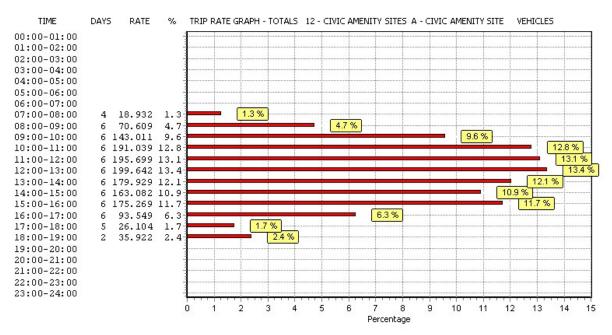
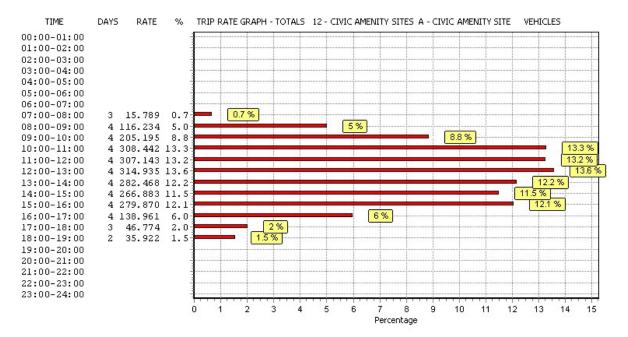



Figure 16: Total Average Hourly Trip Rates (Six TRICS Sites Accepting and Not Accepting Municipal Waste Combined)

Assessing only sites which also accept municipal waste, Table 7.2, also demonstrates that on average the AM development peak, between 10:00 and 11:00, and the PM development peak, between 12:00 and 13:00, falls outside the proposed site's network peaks (AM: 08:00 – 09:00 and PM: 18:00 – 19:00). Again, Figure 17 plots the combined total hourly trip rates for the four sites which accept municipal waste in order to demonstrate the impact on trip generation flows.

Figure 17: Total Average Hourly Trip Rates (Only Sites Which Accept Municipal Waste)

These findings together indicate that network flows should not see significant disruption due to traffic streams going to and from the proposed Civic Amenity Centre because development peaks are outside of the network peak hours. Finally, the analysis has also highlighted that private motors are the predominant trip takers to civic amenity centres, with 89% of the modal split, and therefore the site will not significantly increase HGV presence on the road network.