

NDFA Social Housing Lot 3 Oldtown Mill – Interpretive Report

Client: NDFA on behalf of Kildare County Council

Client's Representative: Malone O'Regan Consulting Engineers

Report No.: 23-0881E

Date: December 2023

Status: Final Report

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY	5
2	SCOI	PE	5
3	DESC	CRIPTION OF SITE	5
4	51TE 4.1	OPERATIONSSummary of site works	
	4.2	Boreholes	
	1.2	4.2.1 Light cable percussion boreholes	
		4.2.2 Rotary drilled boreholes	
	4.3	Standpipe installations	
	4.4	Trial Pits	
	4.5	Slit trenches	
	4.6	Infiltration tests	
	4.7	Surveying	
	4.8	Groundwater monitoring	8
5	ΙΛR	ORATORY WORK	Q
J	5.1	Geotechnical laboratory testing of soils	
	5.2	Geotechnical laboratory testing of rock	
	5.3	Environmental laboratory testing of soils	
6	GRO	UND CONDITIONS	10
	6.1	General geology of the area	
	6.2	Ground types encountered during investigation of the site	10
	6.3	Groundwater	11
7	DISC	USSION	12
	7.1	Proposed construction	
	7.2	Recommendations for construction	12
		7.2.1 Summary	12
		7.2.2 Soil strength parameters	
		7.2.3 Foundations and ground floor construction	12
		7.2.4 Floor slabs	14
		7.2.5 Excavations for services	
		7.2.6 Rock excavatability	15
		7.2.7 Soil aggressivity	15
	7.3	Infiltration drainage	
	7.4	Material re-use	
	7.5	Site contamination and waste disposal	18

APPENDICES

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Core photographs

Appendix D Trial pit logs

Appendix E Trial pit photographs

Appendix F Slit trench logs and drawings

Appendix G Slit trench photos

Appendix H Infiltration test results

Appendix I Geotechnical laboratory test results

Appendix J Environmental laboratory test results

Appendix K SPT hammer energy measurement report

Document Control Sheet

Report No.:		23-0881E			
Project Title:		NDFA Social Ho Interpretive Rep	using Lot 3 – Oldt oort	own Mill	
Client:		NDFA on behalf	of Kildare County	/ Council	
Client's Repres	entative:	Malone O'Regan	Consulting Engir	neers	
Revision:	A01	Status:	Final for Issue	Issue Date:	20 th December 2023
Prepared by:		Reviewed by:		Approved by:	
Rachel White	White	Sean Ross	Ross	Darren O'Mahor	~ /·
B.A. (Mod.) Geos	science	BSc MSc PGeo M	IIEI	BSc MSc MIEI E	

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

Abbreviations used	on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
P	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
SB	Sonic bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
$\overline{}$	Water strike: initial depth of strike.
▼	Water strike: depth water rose to.
Abbreviations relating t	o rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

NDFA Social Housing Lot 3 - Oldtown Mill - Interpretive Report

1 **AUTHORITY**

On the instructions of Malone O'Regan Consulting Engineers, ("the Client's Representative"), acting on the behalf of NDFA and Kildare County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed residential development.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results. A discussion on the recommendations for construction is also provided.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, slit trenches, soil and rock core sampling, environmental sampling, groundwater monitoring, in-situ and laboratory testing, and the preparation of a report on the findings including recommendations for construction.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on an undeveloped site located in Oldtown, County Kildare. The site is bordered by agricultural land to the north and west, The Orchard housing estate to the south, and Oldtown Road to the east. Elevations vary across the site, with a slight rise in elevation towards the east.

The site is currently comprised of several stockpiles of spoil material. These were required to be moved to gain access to some of the positions.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between the 10th of October and 28th of November 2023, comprised:

- sixteen boreholes
 - thirteen light cable percussion boreholes
 - three boreholes by rotary drilling
- a standpipe installation in two boreholes
- six machine dug trial pits
- three machine and hand dug slit trenches; and
- an infiltration test performed in two trial pits

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, and as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

A total of sixteen boreholes were put down in a minimum diameter of 150mm through soils and rock strata to their completion depths by a combination of methods, including light cable percussion boring by a Dando 2000 rig, and rotary drilling by a Comacchio 405 rotary drilling rig.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

4.2.1 Light cable percussion boreholes

Thirteen boreholes (BH01-BH03A and BH04-BH12) were put down to completion in minimum 200mm diameter using a Dando 2000 light cable percussion boring rig. All boreholes were terminated on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples

were taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix K.

No groundwater strikes were encountered during boring.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.2.2 Rotary drilled boreholes

Three boreholes (RC01-RC03) were put to their completion by rotary drilling techniques only. The boreholes were completed using a Comacchio 405 drilling rig.

Symmetrix-cased full hole rotary percussive drilling techniques were employed to advance the boreholes to bedrock, after which rotary coring was employed to recover core samples of the bedrock.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using an SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015+A1:2020: Code of practice for ground investigations*.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.3 Standpipe installations

A groundwater monitoring standpipe was installed in BH06 and RC02.

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Trial Pits

Six trial pits (TP01-TP06) were excavated using a 13t tracked excavator fitted with a 1000mm wide bucket, to depths ranging between 1.30m and 2.20m.

Environmental samples were taken at depths of 0.50m and 1.00m in each trial pit.

Disturbed (small jar and bulk bag) samples were taken at standard depth intervals and at change of strata.

No groundwater strikes were encountered during excavation. The stability of the trial pit walls was noted on completion.

Appendix D presents the trial pit logs with photographs of the pits and arising provided in Appendix E.

4.5 Slit trenches

Three slit trenches (ST01-ST03) were excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to locate and identify buried services at the site.

Drawing of the trenches and the locations of services encountered during excavation are shown along with the slit trench logs in Appendix F, with photographs presented in Appendix G.

4.6 Infiltration tests

Two infiltration/soakaway tests (IT01 and IT02) were carried out in accordance with BRE Digest 365 - Soakaways (BRE, 2016).

Appendix H presents the infiltration pit logs followed by the results and analysis of the infiltration test.

4.7 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

4.8 Groundwater monitoring

Following completion of site works, groundwater monitoring was conducted over four rounds. Ground water monitoring was carried out using a water interface probe.

The monitoring records are presented in Section 6.3.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis
- **compaction related:** California bearing ratio tests
- soil chemistry: pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix I.

5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

Test	Test carried out in accordance with
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load
	strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60
Uniaxial	ISRM Suggested Methods (1981) Suggested method for determining
compression	deformability of rock materials in uniaxial compression, Part 2
strength tests	and
	ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods
	for rock characterization, testing and monitoring, 2007

The test results are presented in Appendix I.

5.3 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected soil samples by Derwentside Environmental Testing Services in Consett, Durham.

Rilta suite of analysis was carried out on several samples for landfill disposal criteria. This included testing for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Phenols
- Organic matter
- Cyanides
- Asbestos screen
- Sulphate and sulphide
- pH

Results of environmental laboratory testing are presented in Appendix J.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise glacial till. These deposits are underlain by dark limestone and shale of the Lucan Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Paved surface: BH02-BH03A encountered 200mm to 300mm of bitmac surfacing.
- Topsoil: encountered in BH05 and RC02 in 100mm and 300mm thickness respectively.
- **Made Ground (sub-base):** approximately 550mm of aggregate fill beneath the paved surface in BH03 and BH03A.
- **Made Ground (fill):** reworked sandy silty gravel fill or sandy gravelly clay fill with varying fragments of bitmac, concrete, plastic, wood and red brick extending to a depth of 0.30m-2.20m.
- **Glacial Till:** sandy gravelly clay, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth.
- Bedrock (Mudstone and Limestone): Weak grey mudstone rockhead was encountered at depths

ranging from 1.60m in RC01 to about 1.70m in RC02. Strong dark grey limestone rockhead was encountered at a depth of 1.90m in RC03. In addition, all other exploratory holes were terminated at depths ranging between 1.00m and 2.45m upon encountering possible bedrock, with the exception of the slit trenches, indicating that they all terminated on either weathered or competent bedrock.

6.3 Groundwater

Groundwater was not noted during drilling at any of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Groundwater was also not noted during excavation of any of the trial pits or slit trenches.

15/12/2023

17/01/2024

20/02/2024

13/03/2024

Subsequent groundwater monitoring of the standpipe installations recorded water levels as shown in Table 1.

 Water Level (mbgl)

 BH06
 RC02

 02/11/2023
 0.00*

 30/11/2023
 0.00*
 2.94

 07/12/2023
 0.00*
 2.84

0.00*

0.00*

0.00*

0.00*

2.26

2.92

2.45

2.56

Table 1 Groundwater monitoring

Continued monitoring of the two installed standpipes will give an indication of the seasonal variation in groundwater level which should be factored into design considerations.

The standpipe installation in RC02 has been placed within the rock, as it is believed the groundwater table for the site is likely within bedrock. Water levels were recorded (2.26-2.94mbgl) across the site over a two week period, however it is recommended that further monitoring (minimum 6 months) be undertaken to give a larger dataset to draw any conclusions from. It should be noted that the levels shown in Table 1 are winter levels, with summer levels likely to be lower given the generally drier weather during this period.

^{*}The area around BH06 was flooded, with water covering the flush cover. Water level was estimated to be 10cm above the flush cover but is not indicative of groundwater levels.

None of the trial pits or slit trenches encountered groundwater during excavation of the overburden, implying that the there is no perched aquifer present within the overburden and any groundwater encountered during excavations is likely to isolated pockets which can be dealt with by localised sump and pump techniques.

7 DISCUSSION

7.1 Proposed construction

It is proposed to construct a new residential development on the site with associated infrastructure.

No further details were available to Causeway Geotech at the time of preparing this report and any designs based on the recommendations or conclusions within this report should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory holes. Causeway Geotech were commissioned to provide a geotechnical report, and it is outwith our remit to advise on structure design.

7.2 Recommendations for construction

7.2.1 Summary

Based on the presence of firm to stiff clay or weathered bedrock at relatively shallow depths across the footprint of the proposed building, the implementation of traditional shallow (spread) foundations (strip/pad) are considered suitable.

7.2.2 Soil strength parameters

When estimating the shear strength of fine soils (silt/clay), reference is made to the results of Standard Penetration Tests (SPT's) carried out within the boreholes. The undrained shear strength of fine soils can be estimated using the correlation developed by Stroud & Butler:

$$C_u = f_1 \times N$$

where f_1 is typically in the range 4 to 6. A median f_1 value of 5 is adopted for this report.

For granular soils (sand/gravel), a graphical relationship between SPT "N" value and angle of shearing resistance, φ , has been developed by Peck, Hanson and Thorburn. This is published in *Foundation Design* and *Construction* (Tomlinson, 2001) and is referenced in this report when deriving angles of shearing resistance for the gravel soils.

7.2.3 Foundations and ground floor construction

Foundations should transfer loading to below any Made Ground or subsoil. The recommended foundation construction and allowable bearing pressure (ABP) at the borehole locations are presented in Table 2.

Table 2: Construction recommendations

Borehole	Depth below EGL* to suitable bearing stratum	Estimated ABP (kPa)	Stratum description	Foundation type	Ground floor construction	Groundwater
BH01	1.20m	200	Stiff CLAY	Strip & pad	Suspended	Not encountered
BH02	1.20m	180	Medium dense GRAVEL	Strip & pad	Ground bearing	Not encountered
вн03	1.00m	250	Dense GRAVEL (Weathered BEDROCK)	Strip & pad	Suspended	Not encountered
вноза	1.10m	250	Dense GRAVEL (Weathered BEDROCK)	Strip & pad	Suspended	Not encountered
BH04	1.20m	250	Dense GRAVEL (Weathered BEDROCK)	Strip & pad	Ground bearing	Not encountered
BH05	1.20m	240	Stiff CLAY	Strip & pad	Ground bearing	Not encountered
ВН06	1.20m	130	Firm CLAY	Strip & pad	Suspended	Not encountered
BH07	1.20m	230	Stiff CLAY	Strip & pad	Ground bearing	Not encountered
BH08	1.20m	120	Firm CLAY	Strip & pad	Suspended	Not encountered
BH09	1.20m	150	Stiff CLAY	Strip & pad	Suspended	Not encountered
BH10	1.20m	190	Stiff CLAY	Strip & pad	Suspended	Not encountered
BH11	1.20m	130	Firm CLAY	Strip & pad	Suspended	Not encountered
BH12	1.20m	170	Stiff CLAY	Strip & pad	Suspended	Not encountered
RC01	1.60m	250	Weathered BEDROCK	Strip & pad	Ground bearing	Not encountered
RC02	1.70m	250	Weathered BEDROCK	Strip & pad	Ground bearing	Not encountered
RC03	1.90m	250	Weathered BEDROCK	Strip & pad	Suspended	Not encountered

*Existing Ground Level

^{**}providing made ground is removed and replaced with engineered fill

Based on the findings of the ground investigation, spread foundations (strip/pad) are considered suitable with estimated allowable bearing pressures between 130kPa and 250kPa at depths between 1.00m and 1.90m on firm to stiff clay or weathered bedrock.

The base of foundation excavations should be thoroughly inspected in accordance with the Earthworks Specification; any soft or loose soils removed with the resultant void backfilled with ST1 concrete or engineered backfill. A consistent bearing stratum should be provided for any building unit to limit differential settlements.

Given the generally fine grained/cohesive nature of the soils throughout the proposed formation levels, excavations for foundations are likely to be relatively stable. However, any instability can be minimised by battering the side slopes at 1 vertical to 2 horizontal and by limiting the duration that the excavation is open. Groundwater control, where required, will be possible by pumping from sumps formed in the base of excavations.

Some localized breaking out of weathered rock may be required, however it is anticipated that any weathered bedrock will be excavatable using conventional digging techniques.

7.2.4 Floor slabs

Floor slabs should not bear directly onto Made Ground or soft soils. Consequently, the use of ground bearing floor slabs is considered appropriate following the removal of any surface Made Ground and soft clay layers and their replacement using well-graded well-compacted granular fill. However, a suspended floor slab should be adopted where the difference in levels of the proposed floor and the base of Made Ground/soft soils is greater than 600mm.

Therefore, given the depth to the base of Made Ground and relative low strength of upper soil layers, a suspended floor slab may be required over parts of the site. The use of intermediate lines of support stub walls would reduce the spans required for flooring units.

7.2.5 Excavations for services

For the installation of services ducts/trenches, it is suggested that open trenching will be the most practicable construction method. Generally speaking, the ground conditions should render the use of open trenching by backhoe excavator possible, with some trench support required for excavation through any made ground.

Where working in open trenches, it is thought that trench support systems, by way of a trench box (or possibly sheet piles), will be required to maintain trench stability and safe working conditions. Groundwater control at these locations should be possible by means of sump pumping.

To preclude the eventuality of differential settlements in pipes, they should be laid on a consistent stratum of appropriate allowable bearing capacity and protected with appropriate fill cover.

Where ducts and chambers must be installed in areas where localised soft spots are encountered, the use of geogrid reinforcement along the base of the excavation is recommended. This will stiffen the base of the trench and help control longitudinal differential settlement.

Backfilling of trenches may be completed by using compacted Cl 804 granular fill and reinstated as appropriate.

7.2.6 Rock excavatability

Rotary drilling established the depth to rockhead, as summarised below in Table 2.

Depth to Depth to **BH ID** weathered competent Comments bedrock (mbgl) bedrock (mbgl) Cored from 2.50m RC01 1.60 2.20 RC02 1.70 2.20 Cored from 2.50m RC03 1.90 2.20 Cored from 2.50m

Table 2: Depth to rockhead

As shown above, depth to weathered bedrock rockhead depth proven by rotary drilling is 1.60-1.90m. Based on those depths and termination depths of cable percussion and trial pits of 1.00m to 2.50m it is reasonable to expect shallow bedrock conditions across the site with local variations in depth likely.

Findings of the rotary boreholes indicated that the upper bedrock encountered is weathered in nature and more of a mudstone which is generally weaker than it's limestone counterpart. This stratum is likely to be excavatable using a large excavator by, however should more competent bedrock be encountered, localized hydraulic breaking will be likely.

Where hydraulic breaking of rock is required, a plan for control of noise and vibration should be produced in advance of construction activities. This should outline the extent and type of monitoring required for the duration of site works, as well as the requirement for respite periods to punctuate breaking activities.

7.2.7 Soil aggressivity

An assessment of the Aggressive Chemical Environment for Concrete (ACEC) was undertaken through reference to the Building Research Establishment (BRE) Special Digest 1 (2017).

As noted by BRE Special Digest 1, sulphates in the soil and groundwater are the chemical agents most likely to attack concrete. The extent to which sulphates affect concrete is linked to their concentrations, the type of ground, the presence of groundwater, the type of concrete and the form of construction in which concrete is used.

BRE Special Digest 1 identifies four different categories of site which require specific procedures for investigation for aggressive ground conditions:

- Sites not subjected to previous industrial development and not perceived as containing pyrite;
- Sites not subjected to previous industrial development and perceived as containing pyrite;
- Brownfield sites not perceived as containing pyrite;
- Brownfield sites perceived as containing pyrite.

For the purposes of this report the site was classified as having been subject to previous industrial development and not perceived as containing pyrite.

The results of chemical tests (pH and water soluble sulphate contents) on soil samples indicate Design Sulphate Class DS-1 or DS-2 and ACEC Class AC-1s or AC-2 – reference Table C1 of BRE Special Digest 1 (Building Research Establishment, 2005). The selection of the concrete Design Chemical (DC) Class and Additional Protective Measures (APMs) should be based on the ACEC Class of the ground, taking into account a number of factors including the type of concrete element, its mode of exposure to the aggressive ground and the required durability. The options for limiting values of concrete required to satisfy various DC Classes are presented in Section D5 of BRE Special Digest 1 (2005).

7.3 Infiltration drainage

In infiltration test carried out in SA01, the rate of infiltration was calculated as 0.06m/hr whilst the absence of outflow from the pit in SA02 precluded the calculation of any infiltration coefficients. The low-permeability fine-grained soils are therefore considered to be poor infiltration media, and would be deemed unsuitable for the implementation of infiltration drainage systems.

Reference should be made the Sustainable Drainage Systems (SuDS) design guidance, taking into account meteorological conditions and a hydrogeological assessment.

7.4 Material re-use

In assessing the reusability of soil several approaches may be considered. Most commonly, the following parameters are used:

- a) moisture content and the plastic limit / moisture content ratio of potential Cohesive Fill: an upper bound ratio of 1.2 is often adopted.
- b) undrained shear strength (undisturbed and remoulded) of potential Cohesive Fill: a lower bound strength of 40kPa is often adopted.
- c) Moisture Condition Value (MCV) of potential Cohesive Fill: a lower bound MCV of 8 is often adopted.
- d) California Bearing Ratio (CBR) of potential Cohesive Fill: a lower bound CBR of 2% is often adopted.

- e) measured SPT Nvalue of potential Cohesive Fill: a lower bound value of 12 is often adopted, using the published relationships between Nvalue and c_u , Clayton (1995). However, the individual blow counts need to be examined to allow assessment of whether Nvalues have been elevated by the presence of coarse gravel or cobbles.
- f) particle size distribution, in particular the fines content, of potential Granular Fill.
- g) moisture content of potential Granular Fill as reflected by laboratory test results and the records of groundwater strikes in coarse grained soils
- h) coefficient of uniformity, Cu, of granular material.

Allowance will also have to be made of construction expedients and their impact on the proportion of reusable soil, including:

- the effects of weathering of the near surface soils
- the presence of moisture susceptible soils
- the difficulties of separating layers and lenses of potential Granular and Cohesive Fill
- the presence of groundwater in lenses and layers of coarse grained soils.

Note that not all the aforementioned parameters are applicable in each case, more so a combination of those most applicable.

In assessing its suitability for use as fill, reference is made to the insitu test results and the laboratory testing conducted on representative disturbed samples obtained from the trial pits and boreholes during the ground investigation.

PSD results have been compared against gradings outlined in Table 6/2 of the TII publication "Specification for Road Works Series 600 – Earthworks", for acceptable earthworks materials. Test results indicated that the majority of material tested can be classified as Class 2 General Cohesive Fill subject to further testing.

Several single point CBR tests were completed on samples from the upper 1m in order as it is assumed any earthworks across the site will not go beyond this depth. As can be seen from the tests results, only three tests results indicated a CBR>2%, with test results indicating a large NMC range. It is possible that processing of the material prior to re-use may increase its strength, however further laboratory testing would be required to confirm. It should be noted that seasonal variations in the groundwater table will affect the natural moisture content of these soils and as such will affect their suitability for re-use.

It should be noted that the field logs make note of low cobble content across the area in concern; these would have tended not to have been included in the samples taken for testing and as such have not been considered in the above assessment. Certain pockets of coarse soils encountered may fall under classification of starter layers.

The above assessment is based on the information gleaned from the investigation points. When carrying out excavation works, further on site testing should be conducted to verify the type/classification and suitability of fill material.

Lastly, it should be noted that the stockpiles on site were not tested as part of this scope of works. If the material on site is required to be re-used within the site a rigorous lab testing regime should be carried out to fully classify the material.

7.5 Site contamination and waste disposal

Selected soil samples were analysed for a range of potential contaminants including:

- Metals;
- Speciated total petroleum hydrocarbons (TPH);
- Speciated polycyclic aromatic hydrocarbons (PAH);
- Cyanides;
- Sulphates and sulphide;
- Phenols; and
- Asbestos screening

Select samples were also tested for a Waste Acceptance Criteria (WAC) suite to assess the potential categorisation of waste from the site.

In the initial examination of the potential risk of site contamination, the laboratory results have been compared to the LQM/CIEH S4UL's assessment criteria relevant to the proposed land use.

The results from the tested samples do not identify significantly elevated concentrations above the available S4UL's.

It should be noted that the above assessment is based on the results of the soil samples against available S4UL's and this assessment has not been undertaken following the LCRM guidelines. Any potential contamination identified during site development by visual or olfactory means should be investigated, including further laboratory testing, and appropriate health & safety, waste disposal and remediation measures adopted.

In assessment of the waste acceptance criteria (WAC) results, the test results have been compared with the European Union Directive limits for Inert waste landfill, Stable, Non-reactive hazardous waste in non-hazardous landfill and hazardous waste landfill criteria. From the samples tested for WAC analysis material from the site may potentially be classified as inert/non-hazardous. Any material excavated for off-site disposal would have to be classified under the guidance in the National Hazardous Waste Management Plan (EPA, 2014).

8 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.

Building Research Establishment (2005) BRE Special Digest 1, Concrete in aggressive ground.

Building Research Establishment (2007), BRE Digest 365: Soakaways.

Highways England (2020), CS 229, Data for pavement assessment.

Land contamination risk management (LCRM), (2020) Environment Agency.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

Project No.: 23-0881E Client: NDFA

Project Name:

NDFA Social Housing Lot 3 - Oldtown Mill

Client's Malone O'Regan Consulting Engineers Representative:

Legend Key

Title:

Site Location Plan

Last Revised: Scale: 05/12/2023

1:8000

Project No.: 23-0881E

Client: NDFA

Project Name:

NDFA Social Housing Lot 3 - Oldtown Mill

Client's
Representative:

Malone O'Regan Consulting Engineers

Legend Key

Locations By Type - CP

Locations By Type - RC

Locations By Type - TP

Title:

Exploratory Hole Location Plan

Last Revised: Scale: 08/12/2023 1:1500

APPENDIX B
BOREHOLE LOGS

453							ct No.	Project	: Name: NDFA So	cial Housing Lot 3 - Oldto	own Mill	'	Borehole I
R		CAUSEN	AY			23-0	881E	Client:	NDFA				BH01
		GEOT	ЕСП					Client's	Rep: Malone	O'Regan Consulting Engi	neers		
Metho able Perc		Plant Used Dando 2000	Top (m) 0.00	Base 2.4	_		linates	Final De	epth: 2.45 m	Start Date: 10/10/2023	Driller:	BE	Sheet 1 of Scale: 1:40
							7.46 E 3.66 N	Elevatio	n: 70.72 mOD	End Date: 10/10/2023	Logger:	SR	FINAL
Depth (m)	Sample / Tests	Field Records	;	Casing N Depth (m)	Vater Depth (m)	Level mOD	Depth (m)	Legend	1	Description	,	Water	Backfill
50 50 - 1.20	ES1 B5					70.12	- 0.60		concrete. Sand is fir	oft brown sandy gravelly CLAY on the to coarse. Gravel is subanguted to coarse. Stiff brown slightly sandy gravestiff brown slightly sandy graves.	ular fine to	coarse.	c
0 0 0 0 - 1.65 0 - 1.50	D3 ES2 B6 D4 SPT (S)	50 (4,5/50 for 155mm SN = 0895) Hammer	1.20	Dry		-			el is subangular fine to mediur			1
00 00 - 2.30 00 - 2.45	D8 B9 D7					68.72	2.00			sandy gravelly CLAY with low c se. Gravel is subangular fine to			2
00 - 2.15 30	SPT (S)	50 (25 for 145mm/50 Hammer SN = 0895 10-10-2023	tor 10mm)	2.30 0		68.27	2.45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		End of Borehole at 2.45m			2
							-						3
							- - -						3
							-						4
							-						4
							- - -						<u>-</u>
							-						5
							-						
													e
													6
							- - -						5
ck at (m) Ca		r Strikes n) Time (min) Rose to (m) From 2.00	(m)	To (r 2.30		e (hh:mm) 00:45		n pit hand dug to 1.20 dwater encountered.	lm.			
Casing D (o (m) 2.30	Petails Diameter 200	Water Added From (m) To (m)											
								Termina	tion Reason			Last Updat	ted
								Terminate	d at refusal on bould	er / possible bedrock.		08/12/202	23 1 (C

		CAUSEW	/AV				ct No.			cial Housing Lot 3 - Oldto	own Mill	В	orehole II
		GEOT	ECH			23-0	881E	Client:	NDFA				BH02
								Client's	Rep: Malone	O'Regan Consulting Engir	neers		
Metho Cable Pero		Plant Used Dando 2000	Top (m) 0.00	_	(m) 70		inates 0.92 E	Final De	pth: 1.70 m	Start Date: 11/10/2023	Driller: BE		Sheet 1 of 1 Scale: 1:40
							6.24 N	Elevatio	n: 70.72 mOD	End Date: 11/10/2023	Logger: SR		FINAL
Depth (m)	Sample / Tests	Field Records	:	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend	BITMAC	Description		Water	Backfill
30 - 0.80	B4					70.42	- 0.30						
50	ES1						-			sandy slightly gravelly CLAY. Sa bangular fine to medium.	and is fine to		0.:
80	B5												
00	D3						-						1.0
0 0 - 1.65	ES2 D6					69.52	1.20		Medium dense dark	k grey angular fine to coarse Gl	RAVFI with low		
20 - 1.70 20 - 1.65	B7 SPT (S)	N=18 (2,4/4,4,5,5) Har	mmer SN =	1.20	Dry					obles are angular. (Possible we			1.9
70	B8	0895				69.02	1.70			Find of Donahala at 4 70m			
							-			End of Borehole at 1.70m			
													2.0
							-						
							-						2.5
							-						3.0
							-						
							-						3.5
							-						4.0
							Ė						
													4.
							-						
							_						5.0
													3.
							-						
							-						5.5
							-						6.0
							-						
													6.1
							-						
							-						7.1
		2. !!	<u> </u>					<u> </u>					
ck at (m) C		r Strikes n) Time (min) Rose to (m)	To (e (hh:mm)	Remarks Inspection	pit hand dug to 1.20	lm.			
			1.70		1.7	70	01:00		lwater encountered.				
Casing D)etaile	Water Added	\dashv										
o (m)	Diameter												
1.70	200							Terminat	ion Reason		La	st Update	ed I
									d at refusal on boulde			8/12/2023	

						Proje	ct No.	Project	: Name: NDFA So	ocial Housing Lot 3 - Oldt	own Mill	E	Borehole	: IE
		CAUSEV	VAY			23-0	881E	Client:	NDFA				BH03	;
		——GEOT	ECH					Client's	Rep: Malone	O'Regan Consulting Engi	neers			
Metho		Plant Used Dando 2000	Top (m	_	(m) 00	Coord	inates	Final De	epth: 1.00 m	Start Date: 10/10/2023	Driller: BE		Sheet 1 o	
able reid	.0331011	Dando 2000	0.00	1.		69623	0.70 E						Scale: 1:	40
						73400	6.47 N	Elevatio	on: 70.61 mOD	End Date: 10/10/2023	Logger: SR		FINAL	-
Depth (m)	Sample / Tests	Field Record	s	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Description		Water	Backfill	
						70.41	- - 0.20		BITMAC	ark grey very sandy angular fin	a ta assesa CDA	\/FI		
_							-		with low cobble cor	ntent. Sand is fine to coarse. C				
0	ES1						-		of limestone.					0.
						69.81	0.80			lightly silty angular fine to coa				
0 0	D3 ES2					69.61	- 1.00 -	وْ قُ وْ وَ وَ	low cobble content bedrock)	. Cobbles are subangular of lin	nestone. (Possib	ole		1.
0 - 1.01		50 (25 for 5mm/50 fo Hammer SN = 0895	r 5mm)	1.00	Dry		-			End of Borehole at 1.00m				
0		10-10-2023		0.00	0.00		_							1.
							_							2.
							-							
							-							
							-							2
							-							
														3
							[
							-							3
							-							
							- -							
							_							4
							-							
														4
							-							
							-							5
							-							
							-							
							-							5
							_							6
							-							
							-							6
							-							
							-							
							-							7
							_							
		r Strikes			elling	Details		Remarks	<u> </u>				1	_
ck at (m) C	asing to (n	n) Time (min) Rose to ((m) From	n (m)	To (r	n) Tim	(hh:mm)		n pit hand dug to 1.00 dwater encountered.	Om.				
					0			NO BLOUIS	awater encountered.					
Casing D	etails	Water Added	\dashv											
	Diameter	From (m) To (m))											
								Termina	tion Reason		La	st Updat	ed	7
1		1	1							er / possible bedrock.		8/12/202		j

	C	AUSEW GEOT	/AY			ject No. 0881E	Project Client: Client's	NDFA	cial Housing Lot 3 - Oldto O'Regan Consulting Engi		E	Borehole BH03A	
Metho	od	Plant Used	Top (m)	Base (n) Coo	rdinates						Sheet 1 of	 f 1
Cable Perc	ussion	Dando 2000	0.00	1.10		230.70 E	Final De	epth: 1.10 m	Start Date: 10/10/2023	Driller: BE		Scale: 1:4	10
						006.47 N	Elevatio	70.65 mOD	End Date: 10/10/2023	Logger: SR		FINAL	
Depth (m)	Sample / Tests	Field Records	i	Casing Wate Depth Depth (m) (m)	h	Depth (m)	Legend	BITMAC	Description		Water	Backfill	
.30 - 0.80 .50 .80 - 1.00	B4 ES1 B6				70.35	- - -		MADE GROUND: Da low cobble content.	ark grey sandy angular fine to o	s are angular.	n		0.5
00 - 1.00 00 00	D3 ES2				69.55	-		Firm brown sandy g suabngular fine to o	gravelly CLAY. Sand is fine to co coarse. End of Borehole at 1.10m	arse. Gravel is			1.0
ruck at (m) C	Water	Strikes Time (min) Rose to (m) From 1.1	(m) To	ng Detai	ils		pit hand dug to 1.10	om.				2.0 2.5 3.0 4.0 4.5 5.0 6.5
							J/-						
Casing D	Details Diameter	Water Added From (m) To (m)											
							Terminat	tion Reason		Last	Jpdat	ed	Ī
							Terminate	d at refusal on bould	er / possible bedrock.	08/1	12/202	3 A (H

	<u> </u>	CAUSEW	AY				ct No. 881E	Project Client: Client's			g Lot 3 - Oldto nsulting Engi			В	BH04	
Metho	od	Plant Used	Top (m)	Base	(m)	Coord	inates		-					S	heet 1 c	 of 1
able Perc		Dando 2000	0.00	1.3	_		1.40 E	Final De	pth: 1.35 m	Start Date:	11/10/2023	Driller:	BE		Scale: 1	
							9.37 N	Elevatio	n: 70.43 mOD	End Date:	11/10/2023	Logger:	SR		FINA	L
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend	"		cription			Water	Backfill	
10 - 0.40 40 - 0.90 50 90 90 90 20 - 1.35 20 - 1.40	B4 B5 ES1 B6 D3 ES2 B8 D7 SPT (S)	50 (3,22/50 for 50mm) SN = 0895 Strikes Time (min) Rose to (r		1.20 Chises	Dry	70.33 70.03 69.53 69.23 69.08	0.10	No ground	MADE GROUND: So bitmac. Sand is fine MADE GROUND: So content. Sand is fine Cobbles are angular Firm dark brown sa is fine to coarse. Gr subangular. Stiff brown slightly: Gravel is subangula Possible BEDROCK (gravel)	e to coarse. Gra oft dark grey sa e to coarse. Gr r. Indy gravelly Cl avel is subange sandy slightly i r fine to media (recovered three End of Bore	ivel is subangula indy gravelly CLA avel is angular fi LAY with low cob- ular fine to coars gravelly CLAY. Sa um.	or fine to co. AY with low ine to coars A bble contents B. Cobbles And is fine to	cobble e. t. Sand are			2.5 2.5 3.0 4.0 4.5 5.0 6.0 6.5 5.2 7.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
								Terminat	tion Reason				Last Upo	date	d 🔚	-
								Terminate	d at refusal on bould	er / nossible b	edrock		08/12/2	າດວວ		خ

1-1.70 Mark							Proje	ct No.	Project N	Name: NDFA So	cial Housing L	ot 3 - Oldto	wn Mill		Bore	hole ID
Marche March Mar			CAUSEV	VAY			23-0	881E	Client:	NDFA					В	H05
Method Plant Used 10 pm Sec 10 10 pm 10		-	——GEOT	ECH					Client's I	Rep: Malone (O'Regan Cons	ulting Engir	neers			
Dear	Meth	nod	Plant Used	Top (m)	Base	(m)	Coord	inates		•	-				Shee	t 1 of 1
Table Tabl	able Per	cussion	Dando 2000						Final Dep	th: 2.30 m	Start Date: 1	0/10/2023	Driller:	BE		
The control of the									Elevation	: 70.77 mOD	End Date: 1	1/10/2023	Logger:	SR	FI	NAL
Firm becoming stiff proven sightly savely stiff to coarse. Greve is subangular fine to medium.	Depth (m)		Field Record	s	Casing Depth (m)	Depth			Legend		Descrip	tion			Mate Ba	ckfill
Casing to (m) Time (min) Rose to (m) From (m) To (m) Time (hh:mm) Inspection pit hand dug to 1.20m. No groundwater encountered.		Tests B4	N=24 (4,5/5,6,6,7) Ha 0895 50 (25 for 70mm/50 f	mmer SN =	Depth (m)	Depth (m)	70.67 68.77	(m) - 0.10		Firm becoming stiff is fine to coarse. Gra	vn slightly sandy brown slightly sa avel is subangula	CLAY. Sand is f andy slightly gi r fine to medii	ravelly CLA	Y. Sand	Water Part Ba B	2.0 2.5 3.0 4.0 4.5 5.0 6.5
Casing to (m) Time (min) Rose to (m) From (m) To (m) Time (hh:mm) Inspection pit hand dug to 1.20m. No groundwater encountered.																
.70 200	Casing E	Casing to (r Details Diameter	m) Time (min) Rose to (2.20	(m)	To (m) Time	(hh:mm)	Inspection p		m.					
Terminated at refusal on boulder / possible bedrock. 08/12/2023	1.70		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Terminatio	on Reason					ated	

		CAUSEW	AY				ct No. 881E	Project Client: Client's		ocial Housing O'Regan Con				Вс	orehole I BH06
Meth	od	Plant Used	Top (m)	Base (ı	n)	Coord	inates		•	I				S	heet 1 of :
Cable Pero	cussion	Dando 2000	0.00	2.30		69615	1.64 E	Final De	epth: 2.30 m	Start Date:	17/10/2023	Driller:	BE		Scale: 1:40
						73394	4.55 N	Elevatio	on: 69.95 mOD	End Date:	17/10/2023	Logger:	СВ		FINAL
Depth (m)	Sample / Tests	Field Records		Casing Wa Depth De (m) (r	pth	Level mOD	Depth (m)	Legend			iption			Water	Backfill
50 - 0.80 50 30 - 1.20	ES1 B5				6	9.15	- 0.80	,	MADE GROUND: So concrete and red br fine to medium. Soft becoming firm	rick. Sand is fine	e to coarse. Gra	vel is subro	unded		0003 0000
0 0 0 - 1.65 0 - 2.00 0 - 1.65	D3 ES2 D6 B7 SPT (S)	N=13 (2,3/4,3,3,3) Ham 0895	nmer SN =	1.20 0.	00		- - - - -		is fine to coarse. Gra						
0 0 - 2.30	D9 B8				6	7.95	2.00		Very stiff dark grey s			CLAY. Sand i	s fine to		2
00 - 2.04		50 (25 for 10mm/50 for Hammer SN = 0895	r 25mm)	2.00 0.	6	7.65	2.30		coarse. Gravel is sub Possible BEDROCK (drilling as a	ingular /		
					6	7.65	[\gravel)		nole at 2.30m				2
															4 4 5 5 6 6 6 7 7
ale at to Na		r Strikes	n) F====	Chisel				Remarks							<u> </u>
Casing D	Details Diameter	Water Added From (m) To (m)	2.00		<u>Го (m)</u> 2.30		e (hh:mm) 01:00	No ground	n pit hand dug to 1.20 dwater encountered. cleared prior to drillii						
2.00	200							Termina	tion Reason				Last Upo	date	d
								Terminate	d at refusal on boulde	er / possible be	drock.		08/12/2	2023	AG

						, -	ct No.	FIUJECT	Name: NDFA So	iciai Housin	g Lot 3 - Olat	OWII IVIIII		DO	orehole	נוו:
		CAUSEW	/AY			23-0)881E	Client:	NDFA						вн07	,
		——GEOT	ECH					Client's		O'Regan Co	nsulting Engi	neers				
Metho	od	Plant Used	Top (m)	Base	(m)	Coor	dinates							SI	heet 1 of	 of 1
able Perc	cussion	Dando 2000	0.00	2.		60619	39.73 E	Final De	pth: 2.00 m	Start Date:	16/10/2023	Driller:	BE		Scale: 1:4	
							35.73 L 35.56 N	Elevatio	n: 69.72 mOD	End Date:	16/10/2023	Logger:	СВ		FINAL	-
Depth (m)	Sample / Tests	Field Records	•	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			cription			Water	Backfill	
00 - 0.50 50	B3 ES1					69.22	- 0.50		MADE GROUND: So coarse. Gravel is sul	brounded fine	to coarse.					0.5
00 - 1.20	B4						-		Gravel is subrounde			illu is illie i	to coarse.			1.0 -
00 20 - 1.65 20 - 1.65 55 - 1.80	ES2 D8 SPT (S) B5	N=23 (3,4/3,4,4,12)		1.20	Dry	68.17	1.55		Very stiff grey sandy	v gravelly CLA)	/ Sand is fine to	coarse Gr	avel is			1.5
						67.82	1.90		subangular fine to c	coarse.						
00 00 - 2.04	D7 SPT (C)	50 (25 for 25mm/50 fo	or 10mm)	1.90	Dry	67.72	- 2.00		gravel)		ehole at 2.00m	urilling as	angular			2.0 -
																2.5
							-									3.0
							-									3.5
							-									4.0
							-									4.5
							-									5.0
							-									5.5
							- - -									6.0 -
							- - -									6.5
							- - -									7.0
ck at (m) Ca		r Strikes a) Time (min) Rose to (m) From	(m)	To (ne (hh:mm) 01:00	No ground	pit hand dug to 1.20 lwater encountered. cleared prior to drilli							
Casing D	Details Diameter	Water Added From (m) To (m)														
1.80	200	, , , , , , , , , , , , , , , , , , , ,						Tormins	ion Reason				lock III	odo+r	ا ا حد	_
									d at refusal on bould	/			Last U ₁ 08/12		* 	٣

	Plant Used	Field Records 12 (3,3/3,3,3,3)	Casin Dept (m)	1.90	Coordii 696098 733888 Level mOD	3.23 E	Final De Elevatio	n: 69.20 mOD MADE GROUND: So	End Date: 19/10/2023 End Date: 20/10/2023 Description fit brown slightly sandy slightly stee and red brick. Sand is fine medium		Water	Scale: 1: FINAl	:40
(m) Tests .00 - 1.20 B5 .50 ES1 .00 D3 .00 ES2 .20 - 1.65 D4 .20 - 1.70 B6 .20 - 1.65 SPT (S)	N=12 (3,3/3,3,3,3)	12 (3,3/3,3,3,3)	Dept (m)	th Depth	Level	Depth		MADE GROUND: So fragments of concre	Description ft brown slightly sandy slightlete and red brick. Sand is fine	y gravelly CLAY with		ı	_
(m) Tests .00 - 1.20 B5 .50 ES1 .00 D3 .00 ES2 .20 - 1.65 D4 .20 - 1.70 B6 .20 - 1.65 SPT (S)	N=12 (3,3/3,3,3,3)	12 (3,3/3,3,3,3)	Dept (m)	th Depth			Legend	fragments of concre	ft brown slightly sandy slightly ete and red brick. Sand is fine			Backfill	
		(25) TOF (0mm) 1.9	20 Dry	68.00 67.50 67.30	1.20		coarse. Gravel is sul	ghtly sandy slightly gravelly Clorounded fine to medium. recovered through percussive End of Borehole at 1.90m				0.5 1.0 1.5 2.0 2.5 3.0 4.5 5.0
				iselling To (i		(hh:mm)	No ground Stockpiles	pit hand dug to 1.20 Iwater encountered. cleared prior to drilli					7.0
		Water Added rom (m) To (m)		1			Terminat Terminate	ion Reason			Jpdate 2/2023		4

	C	AUSEW	AY ECH			ct No. 881E	Project Client: Client's	NDFA	icial Housing Lot 3 - Old O'Regan Consulting Eng			Borehole II BH09
Meth	od	Plant Used	Top (m) B	ase (m)	Coord	linates		-				Sheet 1 of 1
able Perc	cussion	Dando 2000	0.00	2.20	69614	4.02 E	Final De	epth: 2.20 m	Start Date: 17/10/2023	Driller: E	BE	Scale: 1:40
					73391	4.60 N	Elevatio	on: 70.00 mOD	End Date: 17/10/2023	Logger: (СВ	FINAL
Depth (m)	Sample / Tests	Field Records	C	Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Description		Water	Backfill
(m) 200 - 0.70 50 70 - 1.50 20 20 20 - 1.65 30 - 2.10 20 20 - 2.24	Tests	N=15 (5,6/3,4,4,4) 50 (3,5/50 for 95mm) Strikes Time (min) Rose to (n	2	20 Dry	69.30 68.20 67.90 67.80	(m) - 0.70 - 1.80 - 2.10 - 2.20	Remarks Inspection No groun	Firm to stiff brown is subrounded fine: Very stiff greyish bla Gravel is subagular Possible BEDROCK (gravel)	of brown sandy gravelly CLAY. Sand is for medium. Cack sandy gravelly CLAY. Sand is for medium. End of Borehole at 2.20m Dom.	ine to coarse. I is fine to coar	Gravel rse.	2.5 2.5 3.4 4.5 5.6 6.7 7.6
							Stockpiles	cleared prior to drilli	ng.			
Casing D		Water Added										
2.00	Diameter 200	From (m) To (m)	-				Termina	tion Reason		Т	Last Updat	ed 🔳 =
									er / possible bedrock.		08/12/202	

Method Cable Percus	d	GEOT Plant Used	ECH			23-0		ent: NDFA			3H10
Cable Percu	d							ent: NDFA ent's Rep: Malone O'Regan Consulting Engir	neers		
Cable Percu			Top (m)	Base	(m)	Coord	inates	walone o negan consulting Engli	16613	Sho	et 1 of 1
		Dando 2000	0.00	_	00	69614		Start Date: 18/10/2023	Driller: BE		ale: 1:40
							9.65 N	evation: 68.99 mOD End Date: 18/10/2023	Logger: CB	F	INAL
(m)	Sample / Tests	Field Records	5	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	gend Description		Water	ackfill
	B3 ES1						-	MADE GROUND: Soft brown sandy gravelly CLAY. S coarse. Gravel is subangular fine to coarse.	and is fine to		0.5
	B4					68.29	- 0.70	Fire beautiful file of the control o	-d:-f:t	-	0.3
00	D6 ES2 D7						- - -	Firm becoming stiff brown sandy gravelly CLAY. Sar Gravel is subagular fine to coarse.	id is fille to coarse.		1.0
	B5 SPT (S)	N=19 (2,3/5,5,4,5)		1.20	Dry		- - -	(1964년) 1972년 1973년			1.5
	D8					67.19 66.99	- 1.80 - 2.00	Possible BEDROCK (recovered through percussive gravel)	drilling as angular		2.0
0 - 2.01	SPT (S)	50 (25 for 10mm/50 fo	or 0mm)	1.80	Dry		-	End of Borehole at 2.00m			
							- - -				2.5
							- - -				3.0
							- - -				3.5
							- - -				4.0
							- - -				4.5
							-				
							- - -				5.0
							- - -				5.5
							- - -				
							- - -				6.0
							-				6.5
							- - -				7.0
							-				
		r Strikes	, -			g Details		narks			
:k at (m) Cas	sing to (m) Time (min) Rose to (m) From 1.8		To ((hh:mm) 01:00	rection pit hand dug to 1.20m. groundwater encountered. kpiles cleared prior to drilling.			
Casing De		Water Added From (m) To (m)									
o (m) Di 1.80	iameter 200	From (m) To (m)									
								mination Reason ninated at refusal on boulder / possible bedrock.	Last Up 08/12/		Ļ

						Proje	ct No.	Project	Name: NDFA So	cial Housing	g Lot 3 - Oldto	own Mill		Во	rehole ID
		CAUSEN	AY			23-0	881E	Client:	NDFA						BH11
		——GEOT	ECH					Client's	Rep: Malone	O'Regan Co	nsulting Engi	neers			
Metl Cable Per	hod rcussion	Plant Used Dando 2000	Top (m) 0.00	Base 2.1		Coord	linates	Final De	pth: 2.10 m	Start Date:	19/10/2023	Driller:	BE		neet 1 of 1 cale: 1:40
							3.86 E 3.73 N	Elevatio	n: 69.36 mOD	End Date:	19/10/2023	Logger:	СВ		FINAL
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	cription			Water	Backfill
00 - 1.30 50				()	()		-		MADE GROUND: So Sand is fine to coars					,	0.5
00 00 20 - 1.65 20 - 1.90 20 - 1.65	D3 ES2 D4 B8 SPT (S)	N=13 (2,3/3,4,3,3)		1.20	0.00	68.16	1.20		Firm brown slightly is subangular fine to		CLAY. Sand is fir	ne to coars	e. Gravel		1.5
90 - 2.10 00	B6 D9					67.46 67.26	- - 1.90 - - 2.10		Possible BEDROCK (recovered thr	ough percussive	drilling as	angular		2.0
00 - 2.10 00 - 2.04 10	D7 SPT (S)	50 (25 for 10mm/50 fo 19-10-2023	or 25mm)	2.00 2.00		07.20	2.10		(0 + +)	End of Bore	hole at 2.10m				2.5
							-								3.0
							-								3.5
															4.C
							-								4.5
							- - - -								5.0
							- - -								5.5
							- - -								6.C
							- - -								6.5
							- - -								7.0
ck at (m)		er Strikes n) Time (min) Rose to (m) From 1.90	(m)	To (2.1		e (hh:mm) 01:00	No ground	pit hand dug to 1.20 lwater encountered. cleared prior to drilli						
Casing o (m) 2.00	Details Diameter	Water Added r From (m) To (m)													
							-	Terminat	ion Reason				Last Upo	dated	J
								Terminate	d at refusal on bould	er / possible b	edrock.		08/12/2	2023	ΔG

		CAUSEW	/ / \\			_	ect No.		Name: NDFA So	ciai Housin	g Lot 3 - Oldt	own Mill		Bo	oreholo	
		GEOT	ECH			23-0)881E	Client:	NDFA						BH12	<u> </u>
								Client's I	Rep: Malone	O'Regan Co	nsulting Engi	neers				
Meth Cable Per		Plant Used Dando 2000	Top (m) 0.00	_	e (m) 40	Coor	dinates	Final Dep	1th: 2.40 m	Start Date:	18/10/2023	Driller:	BE		heet 1 d Scale: 1	
ouble i ci	00001011	24.140 2000	0.00		.0		01.61 E 36.82 N	Elevation	: 68.25 mOD	End Date:	18/10/2023	Logger:	СВ	3	FINA	
Depth (m)	Sample / Tests	Field Records	5	Casing Depth	Water Depth	Level mOD	Depth (m)	Legend		Des	cription	ļ	ı	Water	Backfill	Τ
.50	B3 ES1			(m)	(m)	IIIOD	-	- XXXXXX (MADE GROUND: So cobble content. San coarse.					×		0.5
00 00	D6 ES2						- - - -									1.0
.20 .20 - 2.00 .20 - 1.65	D7 B4	N=17 (5,6/3,3,5,6)		1.20	Dry	67.05	1.20	<u> </u>	Firm brown sandy g to coarse. Gravel is s subangular.				ind is fine			1.5
.00 .00 - 2.40 .00 - 2.08	D8 B5 SPT (C)	50 (25 for 55mm/50 fo	or 25mm)	2.00	Dry	66.25 65.85	2.00		Possible BEDROCK (gravel)			drilling as	angular			2.0
						03.83	-			End of Bore	ehole at 2.40m					2.5
							-									3.0
							- - - -									4.0
							- - - -									4.5
							- - - -									5.0
							-									5.5
							- - -									6.0
							- - - -									7.0
							-									
		- CA-:l	1	C 1.	_,	- D · · ·		<u> </u>								
uck at (m)		r Strikes n) Time (min) Rose to (m) From 2.20	(m)	To		ne (hh:mm) 01:00	No groundw	oit hand dug to 1.20 vater encountered. leared prior to drilli							
Casing I	Details	Water Added														
To (m)	Diameter 200															
2.20	200						-	Terminatio	on Reason				Last Up	date	d 🔳	—
									at refusal on boulde				08/12/			ئــ

Retury Coring Connection 405		CAUSEWAY GEOTECH Method Plant Used Top (m) Base (Project 23-0	et No. 881E	Project Client: Client's	Name: NDFA Social Housing Lot 3 - Oldtown Mill NDFA Rep Malone O'Regan Consulting Engineers Rep Roule ID RC01
Security Corring Corracchio 405 2.50 5.00 5.20 5.90 5.20						_				Coord	inates	Final De	pth: 5.20 m Start Date: 27/11/2023 Driller: SMCW Sheet 1 of 1
prior Seminary First Recents (Cap See No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	_						I				Elevatio	
Sand in fire to coanse. First brown sandy or gravely CLW with high collable content. Sand solvent processors of the coanse. Coables are substrained and service and service of the coanse. Coables are substrained. First brown sandy or gravely CLW with high coable content. Sand solvent public for coanse. Coables are substrained. If the coanse. First brown sandy is substrained. If the coanse. Coables are substrained and gray MUSTONE. Distinctly weathered gravely resulted dark gray MUSTONE. Distinctly weathered gravely resulted strained and service strained. Solve fracture sporting. Socient fract		Samples	/ Field Records	TCR	SCR	RQD	FI	Depth D	epth			Legend	Description Backfill
100 80 5	(m)	Jampies	, rieiu Necolus			NQD		(m)	(m)	69.90 68.60 68.00	1.60	Legend Company of the	MADE GROUND: Brownish grey sandy angular fine to coarse GRAVEL. Sand is fine to coarse. Firm brown sandy very gravelly CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subangular. 1.0 — 1.0 — 1.5 — Dark grey weathered MUDSTONE. (Driller's description) Dark grey MUDSTONE. (Driller's description) Weak indistinctly thinly laminated dark grey MUDSTONE. Distinctly weathered: greatly reduced strength, closer fracture spacing. Discontinuities: 1.5-25 degree bedding fractures, closely spaced (20/60/90), planar,
Water Strikes Tuck at (m) Casing to (m) Time (min) Rose to (m) To (m) Diam (mm) SKGL SKG Flush Type Termination Reason Last Updated	3.70 4.00 - 4.12 4.50 - 4.65 4.65 - 4.80	C2					15 >20 10 >20						Strong indistinctly thinly laminated dark grey LIMESTONE with medium spaced beds of weak mudstone and rare calcite veins at random orientations (1-8mm thick). Slightly weathered: Slightly reduced strength, slightly closer fracture spacing. Discontinuities: 1. 10-20 degree bedding fractures, closely spaced (30/80/165) planar, smooth, clean.
To (m) Diam (mm) SK6L	truck at (m)					n) Ir	lema	tion pit		d dug to ɔ		water adde	5.5
2.50 200 5.20 146 Flush Type Termination Reason Last Updated				Barro	el	$\frac{1}{2}$							
Flush Type Termination Reason	2.50 200 SKBL					_							
	riusii Type Termination K							nth		Last Updated 08/12/2023 A G S			

	CAUSEWAY GEOTECH Method Plant Used Top (m) Base (23	ject No. -0881E	Project Name: NDFA Social Housing Lot 3 - Oldtown Mill Client: NDFA Client's Rep Malone O'Regan Consulting Engineers	Borehole ID RC02 Sheet 1 of 1		
Rotary D	rilling	Comacch	nio 40	05	0.	00	2.50		ordinates	Final Depth: 5.20 m Start Date: 27/11/2023 Driller: SMCV	Sheet 1 of 1 Scale: 1:40		
Rotary C	Loring	Comacch	110 40	JS	2.	50	5.20		202.94 E 954.91 N	Elevation: 69.94 mOD End Date: 28/11/2023 Logger: EGA	FINAL		
Depth (m)	Samples ,	Field Records	TCR	SCR	RQD	FI	Casing Wa Depth De (m) (r	oth Level		Legend Description	Backfill X		
3.30 - 3.70 3.70 4.76 - 4.91 4.93 - 5.04 5.20		Strikes Time (min)		85	40 40 RQD	l ema nspec	rks	69.64 67.74 67.44 66.74	4 - 0.30 4 - 1.70 4 - 2.20 4 - 2.50 5	TOPSOIL: Dark brown slightly sandy CLAY. Sand is fine. Stiff brown sandy very gravelly CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subangular. Dark grey weathered MUDSTONE (Driller's description) Weak indistinctly thinly laminated dark grey MUDSTONE. Distinctly weathered: reduced strength, much closer fracture spacing. Discontinuities: 1: 0-10 degree bedding fractures, very closely spaced (10/20/30), planar, rough, clean. Strong indistinctly thinly laminated dark grey LIMESTONE with rare calcite veins at random orientations 2-4mm thick. Slightly weathered: slightly reduced strength, slightly closer fracture spacin Discontinuities: 1: 10-30 degree bedding fractures, closely spaced (20/90/160), planar, rough, clean. 2: 1 no. 45 degree joint at 3.35m, planar, rough with white mineralisation on joint surface. 3: 2 no. sub-vertical joints at 4.40m and 4.90m, planar, rough, clean. End of Borehole at 5.20m	1.0 —		
	- · ·	Coro	Barre	ol.									
	Diam (mm)	Core Sk	Barre (6L	CI									
2.50 5.20	2.50 200				nation	Reason		Last	Updated				
	Water Terminated at so								l depth.		12/2023 AGS		

	CAUSEWAY GEOTECH									ct No. 881E	oject Name: NDFA Social Housing ent: NDFA ent's Rep Malone O'Regan Con			hole ID
Metho		Plant l					Base		Coord	linates	al Depth: 5.50 m Start Date: 2	28/11/2023 Driller: SMC	Shee	t 1 of 1
Rotary Di Rotary C	-	Comacch Comacch				00 50	2.5 5.5			.0.14 E			Scale	e: 1:40
Depth				1			Casing	Water	73387 Level	9.75 N Depth	evation: 69.31 mOD End Date: 2	28/11/2023 Logger: EGA		NAL
(m)	Samples)	Field Records	ick	JUK	RQD	FI	Depth (m)	Depth (m)	mOD	(m)	MADE GROUND: Soft brown sandy coarse. Gravel is subrounded fine to	gravelly CLAY. Sand is fine to	Mater Market	0.5 — - - - - - - - - - - - - - - - - - - -
									68.11 67.41	1.20	Firm brown sandy gravelly CLAY. (D			1.5 —
									67.11	2.20	Dark grey weathered LIMESTONE. (Dark grey LIMESTONE. (Driller's des			2.0 —
2.50 - 2.80	C1		100	80	45	5			66.81	2.50	Strong indistinctly thinly laminated calcite veins at random orientation: weathered: slightly reduced streng with light brown discolouration on Discontinuities: 1. 10-30 degree bedding fractures, planar, smooth, clean. 2. 1 no. 80 degree joint from 4.00m light brown staining on joint surface 3. 1 no. 75 degree joint at 4.90m, p calcite mineralisation on joint surface	dark grey LIMESTONE with rare s (1-5mm thick). Slightly th, slightly closer fracture spacin fracture surfaces. closely spaced (50/80/120), at to 4.90m, planar, rough, with e.	ng,	2.5 — - - 3.0 — - - 3.5 —
4.00 - 4.33 4.00	C2		100	90	20	3				-				4.0
5.30 - 5.50 5.50	C3								63.81	5.50	End of Boreh	ole at 5.50m		5.5 — 6.0 — 6.5 — 7.0 —
			TCR	SCR	RQD	FI				-				
	etails Diam (mm)	Core	Barre		m) Ir		tion p		nd dug to oundwater		r added during drilling.			
2.50 5.50	200 146 Flush Type Water Terminated at st						epth.			t Updated 8/12/2023	AGS			

APPENDIX C CORE PHOTOGRAPHS

NDFA Social Housing Lot 3 - Oldtown Mill

RC01 Box 1 (2.50-3.70m)

RC01 Box 1 (3.70-5.20m)

NDFA Social Housing Lot 3 - Oldtown Mill

RC02 Box 1 (2.50-3.70m)

RC02 Box 2 (3.70-5.20m)

NDFA Social Housing Lot 3 - Oldtown Mill

RC03 Box 1 (2.50-4.00m)

RC03 Box 2 (4.00-5.50m)

APPENDIX D
TRIAL PIT LOGS

			Pro	ject No.	Project	Name:		Trial Pit ID		
				-0881E	1	ocial Housing Lot 3 - Oldtown Mill				
	CAUS	EWAY		rdinates	Client:	-		TP01		
	——-G	SEOTECH			NDFA			-		
Method:				220.04 E	1	Representative:		Sheet 1 of 1		
Trial Pitting			7340	37.74 N	1	e O'Regan Consulting Engineers		Scale: 1:25		
Plant:			Ele	vation	Date:	Logger:				
13t Tracked Ex	cavator		70.6	2 mOD	12/10/			FINAL		
Depth	Sample /	Field Records	Level	Depth	Legend	Description	Water			
(m)	Tests		(mOD)	(m)		MADE GROUND: Dark grey sandy very silty angular fine to coarse	GRAVEL			
				-		with high cobble content. Sand is fine to coarse. Cobbles are angu	lar.			
				[
				-				_		
0.50	ES1		70.07	0.55				0.5 —		
			70.07	0.55		MADE GROUND: Stiff brown slightly sandy slightly gravelly CLAY w cobble content. Sand is fine to coarse. Gravel is angular fine to coarse.				
				-		Cobbles are angular. Terram at 0.55m.	arse.			
						Terram at 0.55m.				
1.00	В3			-				1.0		
1.00	ES2			E				-		
				-				-		
			60.00					-		
			69.22	1.40		End of trial pit at 1.40m		1.5 —		
				-						
				-				-		
				-				-		
				-				20		
								2.0 —		
				-						
				Ė				-		
				-				-		
				-				2.5		
				-						
								-		
				-				3.0		
				Ė						
				-						
				-				-		
				-				3.5 —		
				-				-		
				Ė						
				-						
				<u> </u>				4.0		
				-				-		
				-				-		
				-						
				-				4.5 —		
				E				-		
				-				-		
				-				-		
				-						
\A/a+a	r Strikes		Rer	narks:						
Struck at (m)	Remarks	Depth: 1.40	- 1	groundwat	er encou	ntered.				
	1.5	Width: 1.00								
		Length: 3.00								
		Stability:	Ter	mination R	eason		Last Updated			
	Stable				fusal on b	oulder / possible bedrock.	05/12/2023 AGS			

			Proj	ect No.	Project	: Name:		Ti	ial Pit ID
	CALIS	EMAN		0881E	1	ocial Housing Lot 3 - Oldtown Mill			
	CAUS	EWAY EOTECH	Coor	dinates	Client:				TP02
		PLOTECTI	6961	40.58 E	NDFA				
Method:				53.30 N	1	s Representative:			eet 1 of 1
Trial Pitting Plant:				vation	Malone Date:	e O'Regan Consulting Engineers	Loggory	S	cale: 1:25
13t Tracked Ex	cavator			9 mOD	12/10/	2023	Logger: RS		FINAL
Depth (m)	Sample /	Field Records	Level	Depth (m)	Legend	Description		Water	
(m) 0.50 1.00 1.00	ES1 B3 ES2		69.94 69.49	1.80		MADE GROUND: Dark grey sandy very silty angular fir with low cobble content. Sand is fine to coarse. Cobbi Stiff brown slightly sandy slightly gravelly CLAY with lo Sand is fine to coarse. Gravel is angular fine to mediu angular. End of trial pit at 1.80m	es are angular.		1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.5 —
			<u> </u>	<u> </u>					
	Strikes	Depth: 1.80		narks:	er enco	ntered			
Struck at (m)	Remarks	Width: 1.00	I NO 8	groundwat	er encou	mered.			
		Length: 2.50							
		Stability:	Terr	mination R	eason		Last I	pdate	
		Moderately stable				oulder / possible bedrock.		2/2023	AGS

A-N			Proi	ect No.	Project	t Name:	Т	rial Pit ID
		CEVA/AV	1	0881E	1 -	Social Housing Lot 3 - Oldtown Mill		
	CAU	SEWAY GEOTECH		dinates	Client:			TP03
		GEOTECH			NDFA			
Method:				85.22 E	Client's	s Representative:	Sł	neet 1 of 1
Trial Pitting				67.32 N		e O'Regan Consulting Engineers	S	cale: 1:25
Plant:				vation	Date:	Logger:		FINAL
13t Tracked E		1		2 mOD	12/10/	2023 RS		TINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water	
		HVP=216, HVR=9		1.30	Legend Legend	MADE GROUND: Dark grey sandy very silty angular fine to coarse GRAVEL. Sand is fine to coarse. Stiff light brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is angular fine to coarse. Cobbare angular. End of trial pit at 1.30m		1.0 — 1.5 — 2.0 — 3.0 — 4.0 —
				-				4.5 — — — —
\Mate	er Strikes	1	Ren	narks:				
Struck at (m)		Depth: 1.30		groundwat	er encou	ntered.		
,		Width: 1.00						
		Length: 2.50						
		Stability:	Teri	mination R	eason	La	ast Update	d I
		Moderately stable	Tern	ninated at re	efusal on b	oulder / possible bedrock.	05/12/2023	AGS

202			Proj	ect No.	Project	Name:		Tria	l Pit ID			
	CALIS	SEWAY	23-	0881E	NDFA S	ocial Housing Lot 3 - Oldtown Mill						
		SEWAY GEOTECH	Coor	dinates	Client:			T	P04			
			6961	75.60 E	NDFA							
Method:				18.75 N	1	Representative:			et 1 of 1			
Trial Pitting					1	e O'Regan Consulting Engineers		Sca	le: 1:25			
Plant:				vation	Date:		Logger:	F	INAL			
13t Tracked Exc				3 mOD	12/10/	2023	RS		IIVAL			
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water				
(m) 0.50	ES1 ES2	HVP=113, HVR=31	68.93	1.40	Legend Legend	MADE GROUND: Firm brown slightly sandy slightly gracobble content. Sand is fine to coarse. Gravel is subang Cobbles are subangular. Stiff light brown slightly sandy slightly gravelly CLAY. Sa coarse. Gravel is subangular fine to medium. End of trial pit at 1.40m	ular fine to coarse.	Wate	1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 — 4.5 — - - - - - - - - - - - - -			
				ŀ								
				-				+				
Water	Strikes	Denth: 140		narks:	•							
Struck at (m)	Remarks		No	groundwat	er encou	ntered.						
		Width: 1.00										
		Length: 3.50										
		Stability:	Teri	mination R	eason		Last Up	lated				
	Stable Stable			Terminated at refusal on boulder / possible bedrock. 05/12/2								

20			Proj	ect No.	Project		Trial Pit ID				
(H)	CAUS	FWΔY	23-	-0881E	1	ocial Housing Lot 3 - Oldtown Mill					
		EWAY SEOTECH	Coor	dinates	Client:				TP05		
			6960	94.98 E	NDFA						
Method:				75.26 N	1	Representative:			eet 1 of 1		
Trial Pitting						e O'Regan Consulting Engineers		So	cale: 1:25		
Plant: 13t Tracked Exc				vation	Date:		ogger:		FINAL		
Depth Depth	Sample /		Level	9 mOD Depth	11/10/		RS				
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description		Water			
0.50	ES2		67.29	2.20		MADE GROUND: Firm brownish grey slightly sandy grav cobble content and with household waste including she styrofoam fragments and wood fragments. Sand is fine is subangular fine to coarse. Cobbles are subrounded.	ets of plastic,		1.0 —		
						End of trial pit at 2.20m			2.5 —		
									3.0 —		
									3.5 —		
				-					4.0 —		
									4.5 —		
		ĭ '									
	Strikes	Depth: 2.20		narks: groundwate	er encou	ntered					
Struck at (m)	Remarks	Width: 1.00	INO	_B roundWdl(er ericoù	iterea.					
		Length: 2.50									
		Stability:	Teri	mination R	eason		Last U	odate			
	Stability: Unstable			Termination Reason Last Up Terminated at refusal on boulder / possible bedrock. 05/12/							

				ect No.	Proiect	t Name:		Trial Pit ID		
	CALL	CEVAVAN		-0881E		Social Housing Lot 3 - Oldtown Mill				
	CAU	SEWAY		rdinates	Client:			TI	P06	
		GEOTECH			NDFA					
Method:				.22.14 E		s Representative:		Shee	t 1 of 1	
Trial Pitting			7338	861.48 N	1	e O'Regan Consulting Engineers			e: 1:25	
Plant:			Ele	vation	Date:	Logger				
13t Tracked Ex	cavator		68.3	3 mOD	12/10/	² 2023 RS		FI	NAL	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water			
, <i>,</i>			(55)	,		MADE GROUND: Firm brown slightly sandy gravelly CLAY with lo content. Sand is fine to coarse. Gravel is subangular fine to coar	ow cobble			
				-		Cobbles are subangular.	se.		_	
									_	
				-					-	
0.50	ES1								0.5	
				-					_	
			67.53	0.80		MADE GROUND: Stiff brown slightly sandy slightly gravelly CLA	with low		-	
1.00	В3			-		cobble content. Sand is fine to coarse. Gravel is subangular fine Cobbles are subangular.	to coarse.		10	
1.00 1.00	ES2			-					1.0 —	
1.00		HVP=113, HVR=9		-					_	
				-					=	
				-					1.5 —	
				-					_	
				-					=	
			66.43	1.90						
				-		End of trial pit at 1.90m			2.0 —	
				-					-	
				-						
				-					_	
				-					2.5 —	
				-					-	
				-					_	
				-					-	
				- 					3.0	
				-						
				-					=	
				-					-	
				-					3.5 —	
				-					-	
				-					-	
				[-					4.0	
				-					_	
				-					_	
				-						
				-					4.5	
				-					-	
				-						
				-					_	
	r Strikes	Depth: 1.90		narks:	er enco	ntered				
Struck at (m)	Remark	width: 1.00	INO	groundwat	ei eiicou	ilitereu.				
		Length: 2.50								
		Stability:	Ter	mination R	eason		Last Updat	ed		
		Stable	Terr	ninated at re	fusal on b	ooulder / possible bedrock.	05/12/202	5/12/2023 AGS		

APPENDIX E TRIAL PIT PHOTOGRAPHS

TP01

TP01

TP01

TP01

TP01

TP01

TP01

TP02

TP02

TP02

TP02

TP02

TP02

TP02

TP03

TP03

TP03

TP03

TP03

TP03

TP03

TP04

TP04

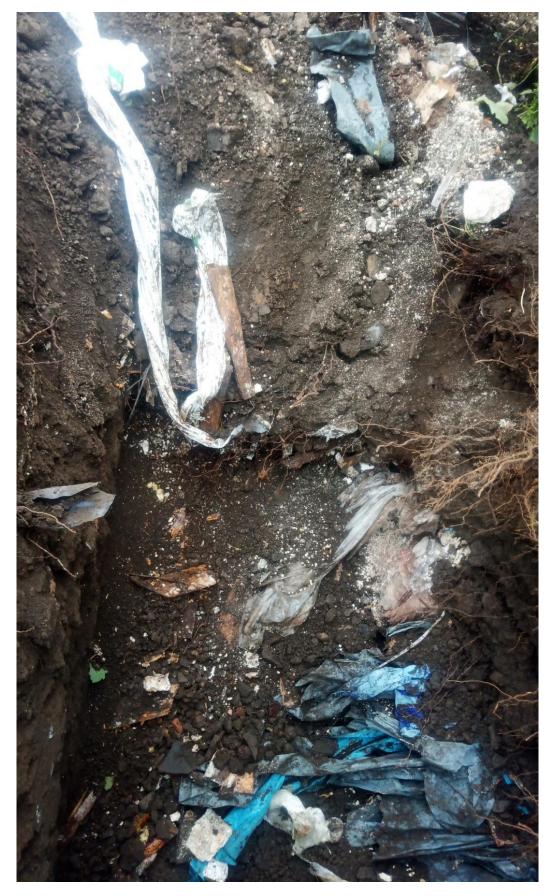
TP04

TP04

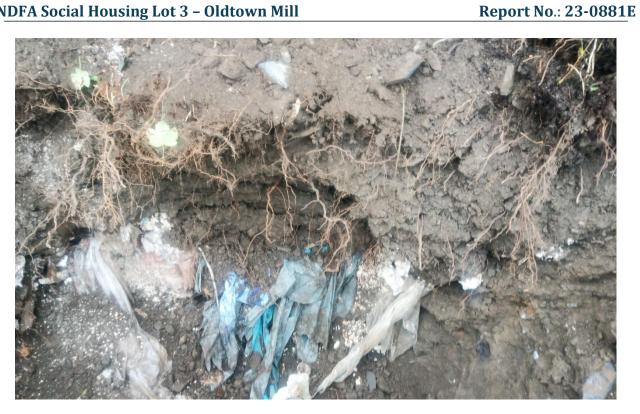
TP04

TP04

TP04



TP05


TP05

TP05

TP05

TP05

TP05

TP06

TP06

Report No.: 23-0881E

TP06

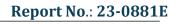
TP06



TP06

TP06

TP06



IT01

IT01

IT01

IT01

IT01

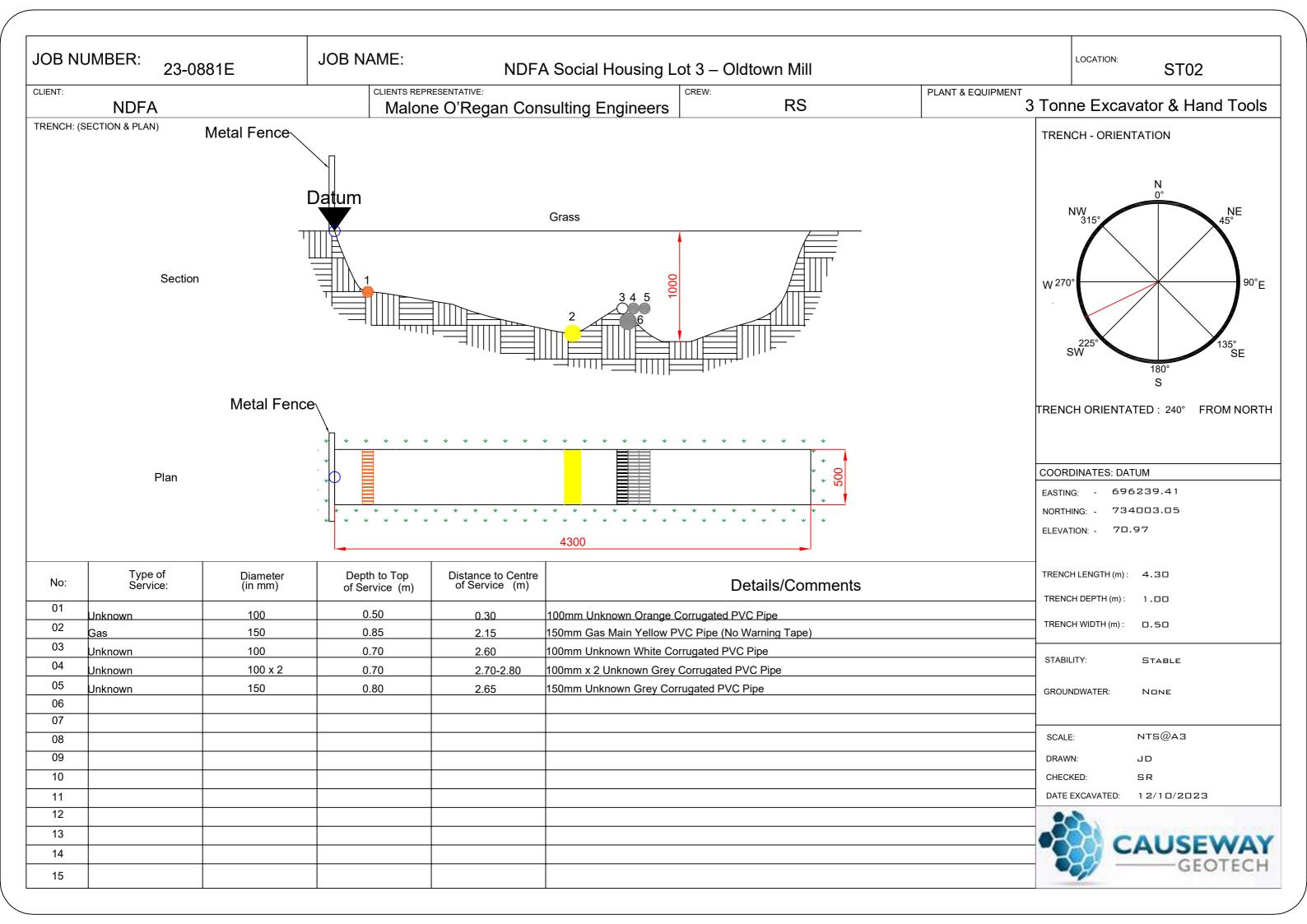
IT02

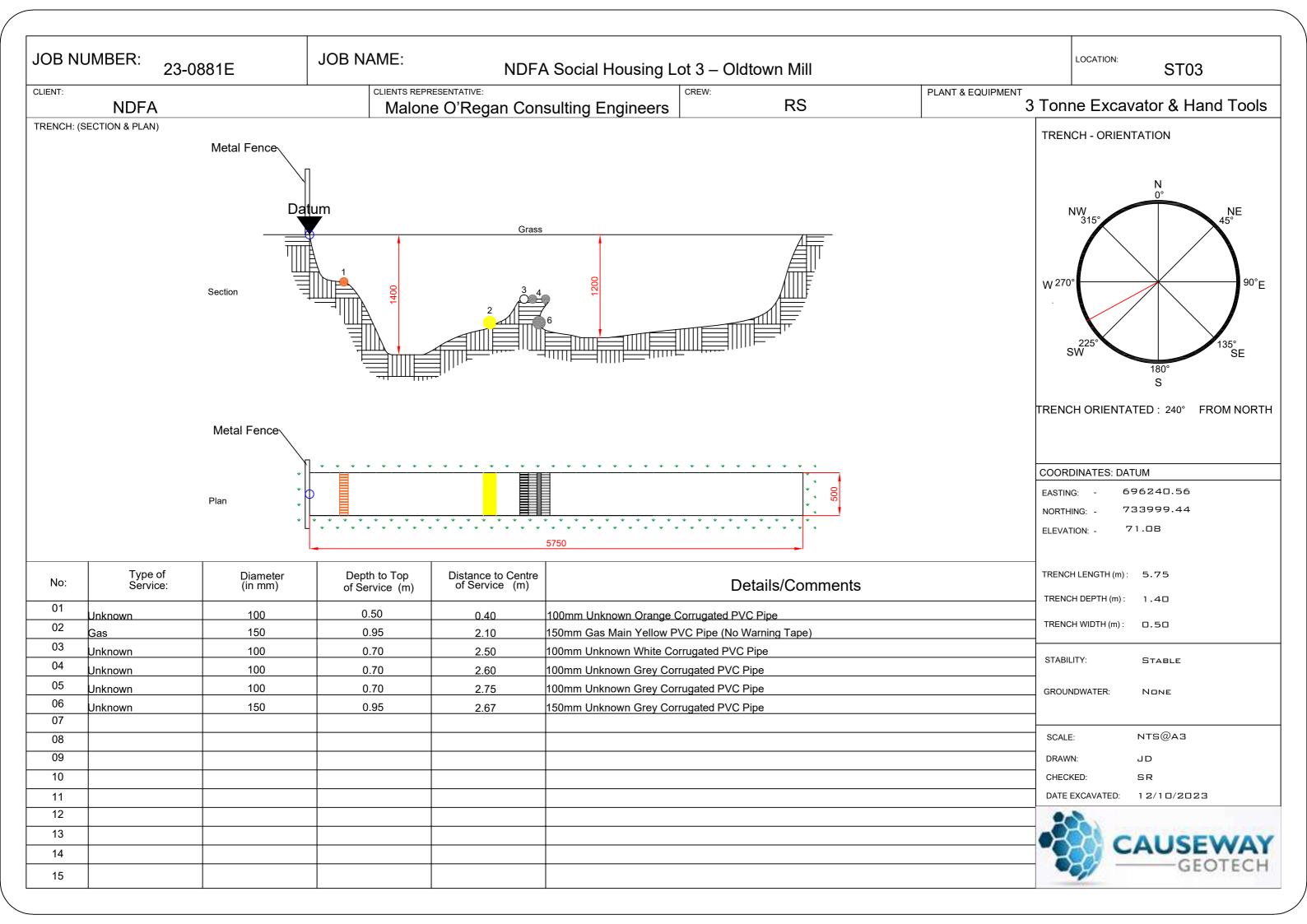
IT02

IT02

IT02

IT02


APPENDIX F SLIT TRENCH LOGS AND DRAWINGS


		Project No.		Project Name:				Trial Pit ID													
	CALICEVALA			23-0881E		NDFA Social Housing Lot 3 - Oldtown Mill															
CAUSEWAY GEOTECH Method: Slit Trenching Plant: 3t Tracked Excavator			Coordinates 696234.32 E 734019.92 N Elevation 70.79 mOD		Client: NDFA Client's Representative: Malone O'Regan Consulting Engineers Date: Logger:				Sheet 1 of 1 Scale: 1:25												
												12/10/	2023 RS								
														Field Records		Depth (m)	Legend	Description		Water	
												Depth (m)	Sample / Tests	Field Records	70.49 70.19 69.89	0.30 - 0.60 - 0.90	Legend	Description MADE GROUND: Firm brown slightly sandy slightly gravelly CLAY. fine to coarse. Gravel is subangular fine to coarse. MADE GROUND: Dark grey sandy silty subangular fine to coarse with high cobble content. Sand is fine to coarse. Cobbles are sub MADE GROUND: Firm brown CLAY. End of trial pit at 0.90m	Sand is	Water	1.0
																-					4.0
									<u> </u>												
				-					=												
				-					_												
				<u> </u>					4.5												
				-																	
				-					_												
				<u> </u>					-												
	ā. II	;	P-	norks:																	
Water Struck at (m)	Strikes Remarks	Depth: 0.90		narks: groundwat	er encou	ntered.															
Struck at (III)	Nemarks	Width: 0.50																			
		Length: 5.00																			
		Stability:	Terr	mination R	eason		Last Upda	ated													
	Moderately stable																				

JOB NUMBER: JOB NAME: LOCATION: NDFA Social Housing Lot 3 – Oldtown Mill 23-0881E ST01 CLIENTS REPRESENTATIVE: PLANT & EQUIPMENT CLIENT: RS 3 Tonne Excavator & Hand Tools Malone O'Regan Consulting Engineers **NDFA** TRENCH: (SECTION & PLAN) **TRENCH - ORIENTATION** Metal Fence Datum Grass Section W 270 90°E SW 225 180° TRENCH ORIENTATED: 240° FROM NORTH Metal Fence COORDINATES: DATUM Plan 696234.32 734019.92 70.79 ELEVATION: -Type of Service: Distance to Centre of Service (m) Diameter (in mm) TRENCH LENGTH (m): Depth to Top 5.00 **Details/Comments** No: of Service (m) TRENCH DEPTH (m): 0.90 01 100 0.55 1.20 100mm Unknown Orange Corrugated PVC Pipe Jnknown TRENCH WIDTH (m): 02 0.50 150 0.80 Water 2.35 150mm Water Main Grey PVC Pipe 03 Unknown 100 0.50 2.65 100mm Unknown White Corrugated PVC Pipe STABILITY: STABLE 04 100 x 2 0.50 3.20-3.30 100mm x 2 Unknown Grey Corrugated PVC Pipe Unknown 05 GROUNDWATER: None 06 07 NTS@A3 SCALE: 80 09 DRAWN: JD 10 SR 12/10/2023 DATE EXCAVATED: 11 12 13 14 15

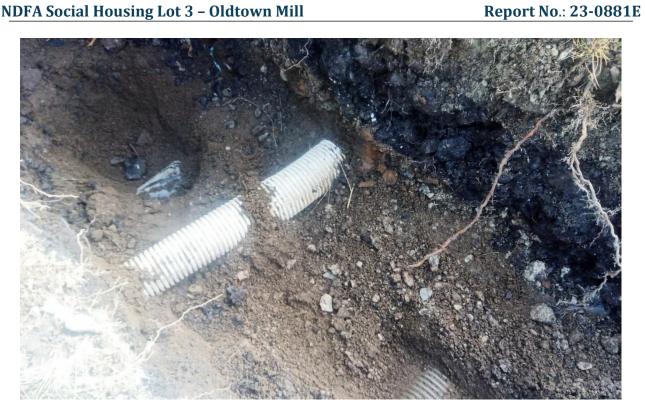
		Project No.		Project Name:				Trial Pit ID													
		23-0881E Coordinates - 696239.41 E		NDFA Social Housing Lot 3 - Oldtown Mill Client: NDFA Client's Representative:																	
CAUSEWAY ——GEOTECH Method:								ST02													
														7340	03.05 N	1				eet 1 of 1	
											Slit Trenching			Elevation		Malone O'Regan Consulting Engineers				Scale: 1:25	
Plant: 3t Tracked Excavator			70.97 mOD		Date: Logger: 12/10/2023 RS			FINAL													
					12/10/	2023															
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water													
			70.87	0.10		MADE GROUND: Firm brown slightly sandy slightly gravelly	CLAY. Sand is														
			70.07	0.10		fine to coarse. Gravel is subangular fine to coarse. MADE GROUND: Dark grey slightly sandy very silty angular	fine to coarse		4												
				-		GRAVEL with high cobble content. Sand is fine to coarse. Co angular.	bbles are		_												
			70.50	- 0.45		angulai.			_												
			70.52	0.45		MADE GROUND: Stiff brown slightly sandy slightly gravelly (CLAY. Sand is		0.5 —												
				-		fine to coarse. Gravel is subangular fine to coarse.			-												
				-					-												
				-					٦												
			69.97	1.00					1.0												
			55.57	1.00		End of trial pit at 1.00m															
				-					_												
				[-												
				-					-												
				-					1.5 —												
				-					=												
				-					_												
				-					2.0												
				-					-												
									-												
				-					-												
				-					-												
				Ē					2.5												
				-					_												
				-					_												
									=												
				_					3.0												
				-					-												
				-					-												
				-					3.5 —												
				-					_												
				[-												
				-					-												
				-					-												
				-					4.0												
				-]												
				-					_												
				Ė					-												
				-					4.5 —												
				-					-												
				-					7												
				[
				-																	
Matar	Strikes		Ren	narks:																	
Struck at (m)	Remarks	Depth: 1.00		groundwate	er encou	ntered.															
		Width: 0.50																			
		Length: 4.30																			
		Stability:	Terr	mination R	eason		Last Up	date													
	Moderately stable			Terminated at scheduled depth - services exposed. 05/12					AGS												

			Project No.		Droject		Trial Pit ID		
- 201				23-0881E		Project Name: NDFA Social Housing Lot 3 - Oldtown Mill			
CAUSEWAY GEOTECH Method: Slit Trenching Plant: 3t Tracked Excavator			Coordinates - 696240.56 E - 733999.44 N - Elevation - 71.08 mOD		Client:		Sheet 1 of 1 Scale: 1:25		
					NDFA				
					Client's				
					Malone				
					Date:				
					12/10/	2023 RS		FINAL	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water		\Box
(111)	16313		(IIIOD)	- (,		MADE GROUND: Firm brown slightly sandy slightly gravelly CLAY.			\dashv
			70.93	0.15		fine to coarse. Gravel is subrounded fine to coarse. MADE GROUND: Dark grey slightly sandy very silty angular fine t	o coarse		
				-		GRAVEL with high cobble content. Sand is fine to coarse. Cobble angular.	s are		-
			70.63	0.45					-
				-		MADE GROUND: Stiff brown slightly sandy gravelly CLAY with low content. Sand is fine to coarse. Gravel is subangular fine to coars		0.5	<i>i</i> —
						Cobbles are subangular.]
				_					
				-					-
				_				1.0	, \Box
				-					╛
				_					4
			69.68	1.40	******	End of trial pit at 1.40m			+
				-				1.5	
				-					4
									\dashv
				_				2.0	
				-				2.0	
				-					\dashv
									\dashv
				-				2.5	
				-					
				-					\exists
				-					⊢
				-				3.0	
				-					
				-					\exists
				-					
				-				3.5	, _
				-					\dashv
				-					+
				-					
				-				4.0)—
				-					+
				-					
				<u>-</u>					4
				-				4.5	; -
				-					
				<u>-</u>					4
				<u> </u>					\exists
	Strikes Remarks	Depth: 1.40		narks: groundwate	er encou	ntered.			
Struck at (m)	Remarks	Width: 0.50	8	,	504				
		Length: 5.75							
	Stability:	Terr	nination R	eason		Last Upda	ted		
Moderately stable			Terminated at scheduled depth - services exposed.					13 AG	R

APPENDIX G SLIT TRENCH PHOTOGRAPHS

ST01

ST01



ST01

ST01

ST01

ST01

ST02

ST02

ST02

ST02

ST02

ST02

ST03

ST03

ST03

ST03

ST03

ST03

APPENDIX H INFILTRATION TEST RESULTS

			Proj	ect No.	Project	Name:		Tri	al Pit ID	
	CALIC	EVAVAV	23-	0881E	1	ocial Housing Lot 3 - Oldtown Mill				
	CAUS	EWAY EOTECH	Coor	dinates	Client:					
	G	ILOTECTI	6063	04.08 E	NDFA					
Method:				11.86 N	1	Representative:		She	et 1 of 1	
Soakaway Pit						e O'Regan Consulting Engineers		Sc	ale: 1:25	
Plant:				vation	Date:				INAL	
13t Tracked Exc				3 mOD	12/10/	2023	RS		III	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
				-		MADE GROUND: Grey sandy silty angular fine to coars cobble content. Sand is fine to coarse. Cobbles are an			_	
				-		cossic content. Sund is time to course. Cossics are any	Surar.		_	
			69.83	0.30		Stiff brown slightly sandy slightly gravelly CLAY. Sand is	fine to coarse.	-	-	
				-		Gravel is subangular fine to coarse. Terram at 0.30m.			-	
				-					0.5 —	
				-					_	
				-					-	
				- -					-	
				-					1.0	
			68.93	1.20		Find of trial -it -t 4 00				
				_		End of trial pit at 1.20m			4	
				-					-	
				Ė					1.5	
				-						
				-					_	
									-	
				-					2.0	
				-]	
				-					_	
				-					_	
				-					2.5 —	
				- -					4	
				_					-	
				-					3.0	
				- -					4	
									-	
				-					3.5 —	
				-					4	
									-	
				-					4.0	
				_						
				-					_	
				-					-	
				-					4.5 —	
				<u> </u>						
				-						
				<u> </u>					4	
						<u></u>				
Water		Depth: 1.20		narks:		ntarad				
Struck at (m)	Remarks	Width: 0.75	NO §	groundwat	er encou	merea.				
		Length: 2.75								
		Stability:	Terr	nination R	eason		Last U	dated		
		Moderately stable	Term	ninated at re	fusal on b	oulder / possible bedrock.	05/12		AGS	

Soakaway Infiltration Test

Project No.: 23-0881E

Site: NDFA Social Housing Lot 3 -Oldtown Mill

Test Location: IT01

Test Date: 12 October 2023

	width (m)	length (m)	Analysis using method as described in BRE Digest 365
test pit top dimensions	0.75	2.75	and CIRIA Report C697-The SUDS Manual
test pit base dimensions	0.40	1.00	

test pit depth (m) 1.20

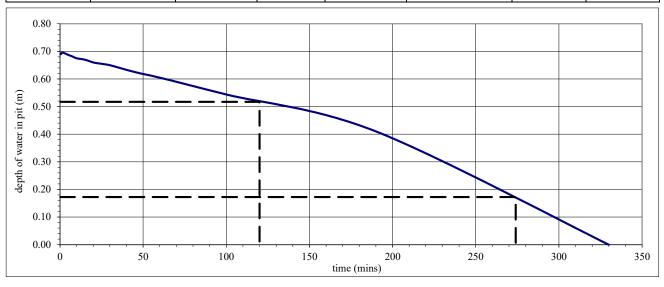
depth to groundwater before adding water (m) = dry

	st pit depth (iii)	2.20
	Depth to	Head of water
Time	water surface	in pit
(mins)	(m)	(m)
0	0.51	0.69
1	0.51	0.69
1	0.51	0.70
2	0.51	0.70
4	0.51	0.69
6	0.52	0.69
8	0.52	0.68
10	0.53	0.68
15	0.53	0.67
20	0.54	0.66
25	0.55	0.66
30	0.55	0.65
45	0.58	0.63
60	0.60	0.61
100	0.66	0.54
190	0.79	0.41
330	1.20	0.00
	ı	ı

RESULTS (FROM GRAPH BELOW)

Test start

75% head of water at 0.52~m depth to water surface (target) 0.68~m time to reach target depth 120.0~mins


Test end

\$25%\$ head of water at 0.17~m depth to water surface (target) 1.03~m time to reach target depth $\,274.0~mins$

test infiltration rate (q) = 0.06 m/h

TARGET DEPTHS AND CALCULATED VALUES

Ī		depth to water	head of water		volume of	Area of walls and		
	time	surface	in pit	time elapsed	water lost	base at 50% drop	q	q
	(mins)	(m)	(m)	(mins)	(m^3)	(m^2)	(m/min)	(m/h)
	120	0.68	0.52	154	0.26	1.63	1.1E-03	0.063
ſ	274	1.03	0.17	134	0.20	1.03	1.16-03	0.005

A-N			Proi	ect No.	Project	t Name:		Tr	ial Pit ID
				0881E	1 -	Social Housing Lot 3 - Oldtown Mill		•	
	CAUS	EWAY EOTECH		dinates	Client:			IT02	
	G	EOTECH		NDFA					
Method:				77.38 N	1	s Representative:		Sh	eet 1 of 1
Soakaway Pit				IVIa		Malone O'Regan Consulting Engineers			
Plant: 13t Tracked Exc	cavator					Logger: 2023 RS			FINAL
Depth Depth	Sample /	5.115	Level	Depth				ē	
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description MADE GROUND: Firm brown slightly sandy slightly gravelly CLAY	with low	Water	
			68.14	0.45		cobble content. Sand is fine to coarse. Gravel is subangular fine to Cobbles are subrounded. MADE GROUND: Stiff dark grey slightly sandy gravelly CLAY with cobble content. Sand is fine to coarse. Gravel is subangular fine to Cobbles are subangular.	o coarse.		0.5 —
			67.39	1.20		End of trial pit at 1.20m			
				-					_
									1.5 —
				-					_
				-					-
									-
				-					2.0 —
				-					_
									-
				-					2.5 —
									_
				-					-
				-					_
				-					3.0
				-					_
				-					_
				-					-
				-					3.5 —
				- -					=
				-					-
				-					4.0 —
				-					_
				-					-
				-					
				- -					4.5 —
				<u>-</u>					-
				-					_
				-					-
								士	
Water Struck at (m)	Strikes Remarks	Depth: 1.20		narks: groundwat	er encou	ntered.			
23.200.00 (111)		Width: 0.70							
		Length: 2.50							
		Stability:		nination R			Last Upda		
		Moderately stable	Term	ninated at re	fusal on b	oulder / possible bedrock.	05/12/20)23	ACHS

Soakaway Infiltration Test

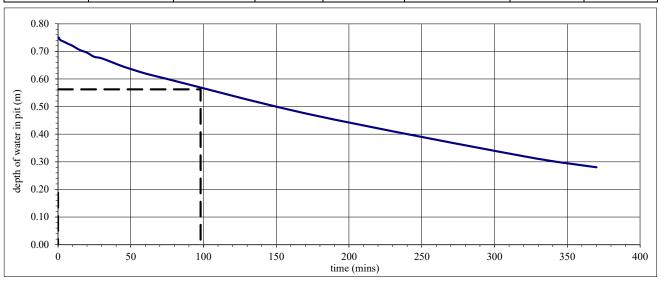
Project No.: 23-0881E

Site: NDFA Social Housing Lot 3 -Oldtown Mill

Test Location: IT02

Test Date: 12 October 2023

width (m) length (m) Analysis using method as described in BRE Digest 365 test pit top dimensions 0.70 2.50 and CIRIA Report C697-The SUDS Manual test pit base dimensions 0.40 1.00


test pit depth (m) 1.20 depth to groundwater before adding water (m) = dry

-		
	Depth to	Head of water
Time	water surface	in pit
(mins)	(m)	(m)
0	0.45	0.75
1	0.45	0.75
1	0.46	0.75
2	0.46	0.74
4	0.47	0.74
6	0.47	0.73
8	0.48	0.73
10	0.48	0.72
15	0.50	0.71
20	0.51	0.70
25	0.52	0.68
30	0.53	0.68
45	0.56	0.65
60	0.58	0.62
75	0.60	0.60
175	0.73	0.47
320	0.88	0.32
370	0.92	0.28

RESULTS (FROM GRAPH BELOW) Test start 75% head of water at 0.56 m depth to water surface (target) 0.64 m time to reach target depth 98.0 mins Test end 25% head of water at 0.19 m depth to water surface (target) 1.01 m time to reach target depth not reached infiltration rate (q) is very low

TARGET DEPTHS AND CALCULATED VALUES

time	depth to water surface	head of water in pit	time elapsed		Area of walls and base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m ²)	(m/min)	(m/h)
98	0.64	0.56	N/A				
	1.01	0.19	N/A				

APPENDIX I GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE Causeway Geotech Ltd

NI: +44 (0)28 276 66640

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

17 November 2023

Project Name:	NDFA Social Housing Lot 3 - Oldtown Mill
Project No.:	23-0881E
Client:	NDFA
Engineer:	Malone O'Regan Consulting Engineers

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 16/10/2023 and 17/11/2023.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: NDFA Social Housing Lot 3 - Oldtown Mill

Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	9
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	9
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	9
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	9
SOIL	California Bearing Ratio (CBR)	BS 1377-4: 1990: Cl 7	9

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	pH Value of Soil		9
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	Sulphate Content water extract		9

Summary of Classification Test Results

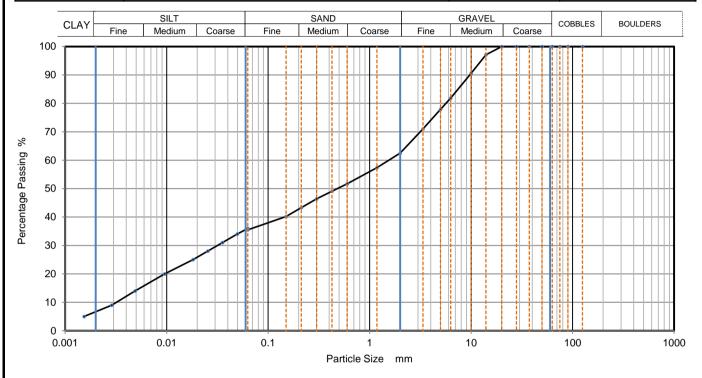
Project No.

Project Name

23-0881E

NDFA Social Housing Lot 3 - Oldtown Mill

		San	nple			Density		W	Passing	LL	PL	ΡI	Particle	Casagrande
Hole No.	Ref	Тор	Base	Туре	Specimen Description	bulk Mg/m	dry 3	%	425μm %	%	%	%	density Mg/m3	Classification
BH01	6	1.20	2.00	В	Brownish grey sandy gravelly silty CLAY.			16	49	36 -1pt	21	15		CI
BH02	5	0.80	1.20	В	Brownish grey sandy slightly gravelly silty CLAY.			25	80	40 -1pt	22	18		CI
BH04	6	0.90	1.20	В	Grey sandy slightly gravelly silty CLAY.			20	59	36 -1pt	21	15		CI
BH05	6	1.20	2.00	В	Brownish grey sandy slightly gravelly silty CLAY.			21	64	37 -1pt	23	14		CI
TP01	3	1.00		В	Brownish grey sandy slightly gravelly silty CLAY.			14	71	34 -1pt	19	15		CL
TP02	3	1.00		В	Brownish grey sandy slightly gravelly silty CLAY.			17	67	34 -1pt	20	14		CL
TP03	3	1.00		В	Brownish grey sandy slightly gravelly silty CLAY.			15	71	35 -1pt	19	16		CL/CI
TP04	3	1.00		В	Brownish grey sandy slightly gravelly silty CLAY.			29	83	46 -1pt	24	22		Cl
TP06	3	1.00		В	Brownish grey sandy slightly gravelly silty CLAY.			21	71	38 -1pt	21	17		Cl


All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

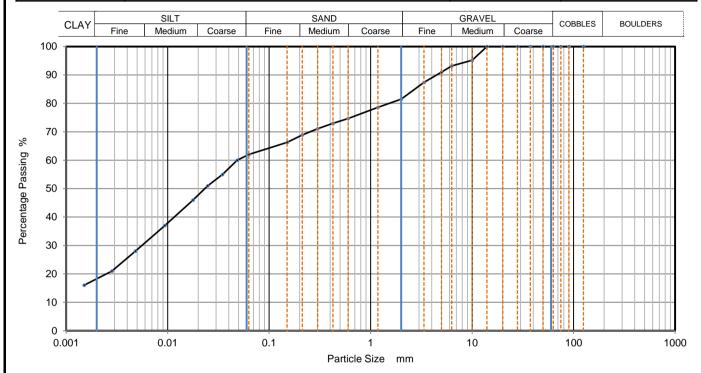
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 16/11/2023 wd - water displacement cas - Casagrande method gj - gas jar wi - immersion in water 1pt - single point test Stephen Watson

CAUSEWAY	DART	ICLE CIZE DICT	FDIDLITION		Job Ref		23-0881E	
———GEOTECH	PARI	ARTICLE SIZE DISTRIBUTION				it No.	BH01	
Site Name	NDFA Social Housing I	ill	Sample No.		6			
Specimen Description	Brownish grey sandy gra		Sample Top		1.20			
Specimen Description	Brownish grey sandy gra		Depth (m)	Base	2.00			
Specimen Reference	7 Specimen 1.2 m			Sample Type		В		
Test Method				KeyLAB ID		Caus2023101622		

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	36
90	100	0.04965	34
75	100	0.03555	31
63	100	0.02545	28
50	100	0.01821	25
37.5	100	0.00957	20
28	100	0.00489	14
20	100	0.00287	9
14	97	0.00153	5
10	91		
6.3	82		
5	78		
3.35	71		
2	63		
1.18	57		
0.6	52	Particle density	(assumed)
0.425	49	2.65	Mg/m3
0.3	46		
0.212	43		
0.15	40]	
0.063	36		

Dry Mass of sample, g	430

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	37.5
Sand	27.1
Silt	28.8
Clay	6.6


Grading Analysis		
D100	mm	
D60	mm	1.54
D30	mm	0.0324
D10	mm	0.00313
Uniformity Coefficient		490
Curvature Coefficient		0.22

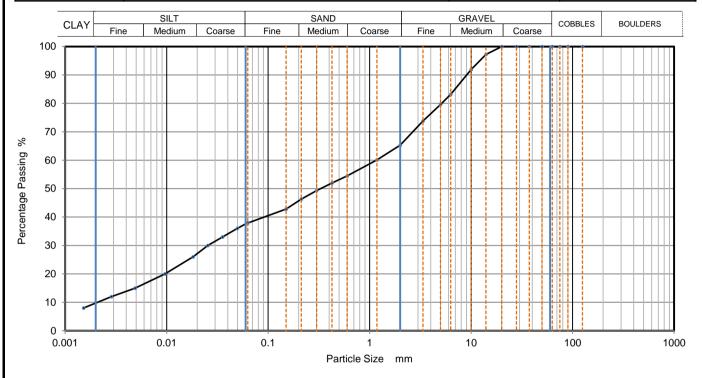
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE CIZE DISTRIBUTION		Job Ref		23-0881E		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION -			Borehole/Pit No.		BH02	
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		5	
Specimen Description			Sample	Тор	0.80		
specimen bescription	Brownish grey sandy sligh	Brownish grey sandy slightly gravelly silty CLAY.			Depth (m)	Base	1.20
Specimen Reference	7 Specimen 0.8 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2023101623	

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	62
90	100	0.04836	60
75	100	0.03465	55
63	100	0.02482	51
50	100	0.01778	46
37.5	100	0.00940	37
28	100	0.00481	28
20	100	0.00283	21
14	100	0.00150	16
10	95		
6.3	93		
5	91		
3.35	87		
2	82		
1.18	79		
0.6	75	Particle density	(assumed)
0.425	73	2.65	Mg/m3
0.3	71		
0.212	69		
0.15	66		
0.063	62		

Dry Mass of sample, g	383

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	18.5
Sand	19.5
Silt	43.8
Clay	18.2


Grading Analysis		
D100	mm	
D60	mm	0.05
D30	mm	0.00575
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

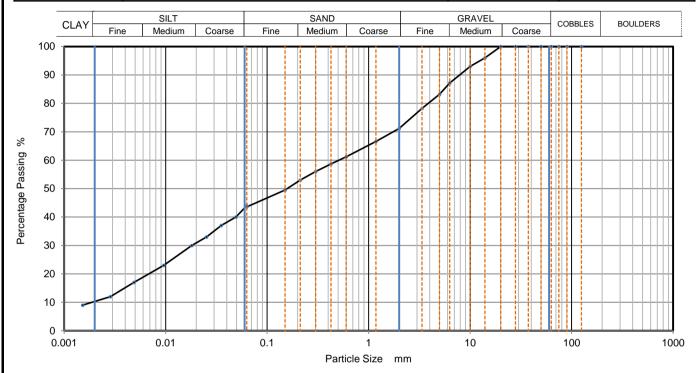
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE SIZE DISTRIBUTION		Job Ref		23-0881E	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION -			Borehole/Pit No.		BH04
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		6
Specimen Description			Sample Depth (m)	Тор	0.90	
Specimen Description	Grey sandy slightly gravelly silty CLAY.			Base	1.20	
Specimen Reference	7 Specimen 0.9 m			Sample Typ	e	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2023101624

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	38
90	100	0.04965	36
75	100	0.03555	33
63	100	0.02545	30
50	100	0.01821	26
37.5	100	0.00963	20
28	100	0.00489	15
20	100	0.00286	12
14	97	0.00152	8
10	92		
6.3	83		
5	80		
3.35	74		
2	65		
1.18	60		
0.6	55	Particle density	(assumed)
0.425	52	2.65	Mg/m3
0.3	49		
0.212	46		
0.15	43		
0.063	38		

Dry Mass of sample, g	422
	·

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	34.7
Sand	27.4
Silt	28.2
Clay	9.7


Grading Analysis		
D100	mm	
D60	mm	1.17
D30	mm	0.0263
D10	mm	0.00213
Uniformity Coefficient		550
Curvature Coefficient		0.28

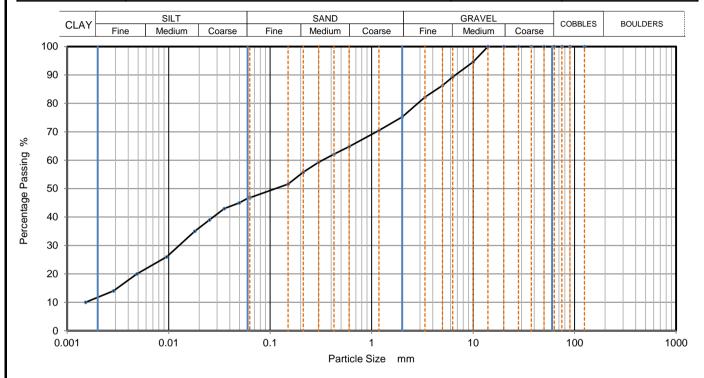
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE CIZE DISTRIBUTION		Job Ref		23-0881E		
——GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.		ВН05	
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		6	
Specimen Description	iption Brownish grey sandy slightly gravelly silty CLAY.		Sample	Тор	1.20		
specimen bescription			Depth (m)	Base	2.00		
Specimen Reference	7 Specimen 1.2 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2023101625

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	44	
90	100	0.04933	40	
75	100	0.03533	37	
63	100	0.02529	33	
50	100	0.01810	30	
37.5	100	0.00957	23	
28	100	0.00487	17	
20	100	0.00286	12	
14	96	0.00152	9	
10	93			
6.3	87			
5	83			
3.35	78			
2	71			
1.18	67			
0.6	61	Particle density	(assumed)	
0.425	59	2.65	Mg/m3	
0.3	56			
0.212	53			
0.15	50			
0.063	44			

Dry Mass of sample, g	401

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	28.8
Sand	27.6
Silt	33.4
Clay	10.2


Grading Analysis		
D100	mm	
D60	mm	0.509
D30	mm	0.0187
D10	mm	0.00192
Uniformity Coefficient		270
Curvature Coefficient		0.36

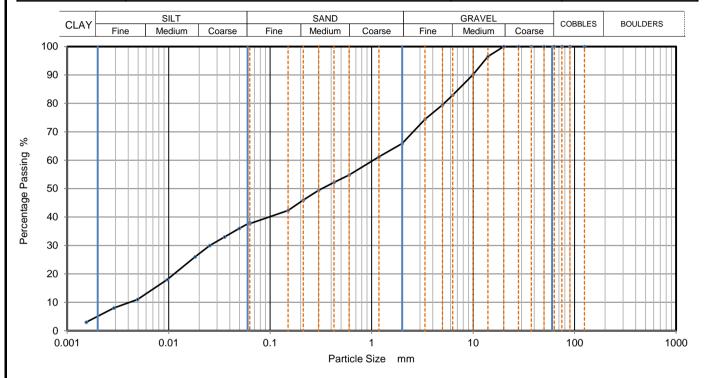
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE CIZE DISTRIBUTION		Job Ref			23-0881E	
———GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.		TP01	
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		3	
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.		Sample	Тор	1.00		
specimen bescription			Depth (m)	Base			
Specimen Reference	7 Specimen 1 m			m	Sample Typ	e	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2023101626

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	47	
90	100	0.04965	45	
75	100	0.03533	43	
63	100	0.02529	39	
50	100	0.01810	35	
37.5	100	0.00957	26	
28	100	0.00487	20	
20	100	0.00286	14	
14	100	0.00152	10	
10	95			
6.3	89			
5	86			
3.35	82			
2	75			
1.18	71			
0.6	65	Particle density	(assumed)	
0.425	62	2.65	Mg/m3	
0.3	59			
0.212	56			
0.15	52			
0.063	47			

Dry Mass of sample, g 427

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	24.8
Sand	28.4
Silt	34.9
Clay	11.9


Grading Analysis		
D100	mm	
D60	mm	0.328
D30	mm	0.0126
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

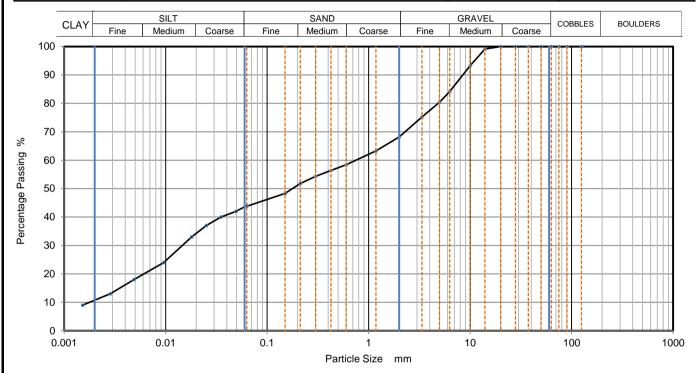
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	WAY DARTICLE SIZE DISTRIBUTION			Job Ref		23-0881E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		TP02		
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		3	
Specimen Description				Sample Depth (m)	Тор	1.00	
specimen bescription	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.		Base				
Specimen Reference	7	Specimen Depth	1	m	Sample Typ	e	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2023101627

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06300	38			
90	100	0.04965	36			
75	100	0.03555	33			
63	100	0.02545	30			
50	100	0.01821	26			
37.5	100	0.00968	18			
28	100	0.00495	11			
20	100	0.00289	8			
14	97	0.00154	3			
10	90					
6.3	83					
5	80					
3.35	74					
2	66					
1.18	61					
0.6	55	Particle density	(assumed)			
0.425	52	2.65	Mg/m3			
0.3	49					
0.212	46					
0.15	42					
0.063	38					

Dry Mass of sample, g	440

Sample Proportions	% dry mass				
Cobbles	0.0				
Gravel	34.1				
Sand	28.2				
Silt	32.4				
Clay	5.3				


Grading Analysis		
D100	mm	
D60	mm	1.04
D30	mm	0.0268
D10	mm	0.00388
Uniformity Coefficient		270
Curvature Coefficient		0.18

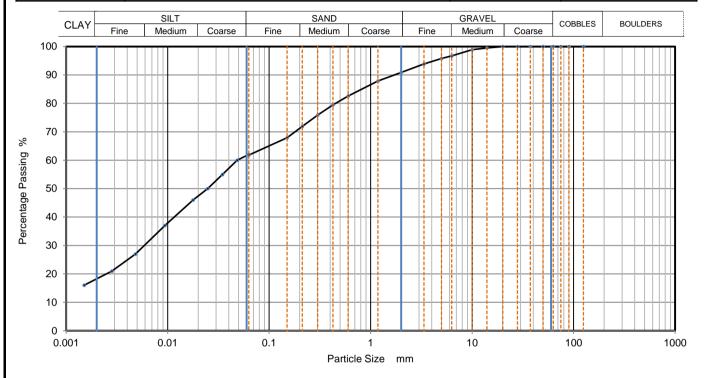
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	AY DARTICLE CIZE DISTRIBUTION			Job Ref		23-0881E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		TP03		
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		3	
Specimen Description				Sample	Тор	1.00	
specimen bescription	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.			Depth (m)	Base		
Specimen Reference	7	Specimen Depth	1	m	Sample Typ	e	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2023101628

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06300	44			
90	100	0.04933	42			
75	100	0.03510	40			
63	100	0.02514	37			
50	100	0.01800	33			
37.5	100	0.00957	24			
28	100	0.00487	18			
20	100	0.00286	13			
14	99	0.00152	9			
10	93					
6.3	84					
5	80					
3.35	75					
2	68					
1.18	63					
0.6	58	Particle density	(assumed)			
0.425	56	2.65	Mg/m3			
0.3	54					
0.212	52					
0.15	48					
0.063	44					

Dry Mass of sample, g	463
	·

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	31.8
Sand	24.4
Silt	33.1
Clay	10.7


Grading Analysis		
D100	mm	
D60	mm	0.746
D30	mm	0.0148
D10	mm	0.00177
Uniformity Coefficient		420
Curvature Coefficient		0.17

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	AY DARTICLE CIZE DISTRIBUTION			Job Ref		23-0881E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		TP04		
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		3	
Specimen Description				Sample	Тор	1.00	
specimen bescription	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.			Depth (m)	Base		
Specimen Reference	7	Specimen Depth	1	m	Sample Type		В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2023101629

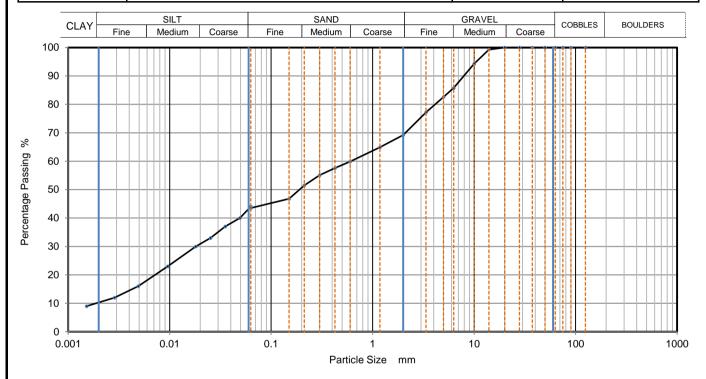
Siev	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06300	62			
90	100	0.04836	60			
75	100	0.03465	55			
63	100	0.02482	50			
50	100	0.01778	46			
37.5	100	0.00940	37			
28	100	0.00481	27			
20	100	0.00283	21			
14	100	0.00150	16			
10	99					
6.3	97					
5	96					
3.35	94					
2	91					
1.18	88					
0.6	83	Particle density	(assumed)			
0.425	80	2.65	Mg/m3			
0.3	76		_			
0.212	72					
0.15	68					
0.063	62					

Dry Mass of sample, g	375
-----------------------	-----

Sample Proportions	% dry mass
Cobbles 0.0	
Gravel	9.1
Sand	29.0
Silt	43.8
Clay	18.1

Grading Analysis		
D100	mm	
D60	mm	0.0511
D30	mm	0.00579
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377-2 :1990 unless noted below



LAB 05R - Version 6

10122

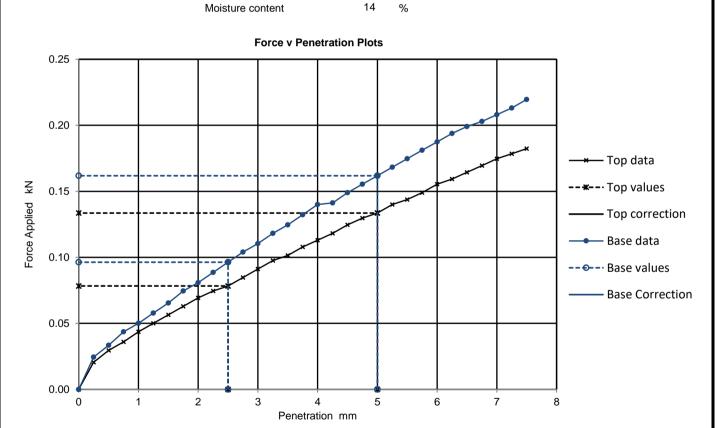
CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref		23-0881E	
———GEOTECH			Borehole/Pit No.		TP06	
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill		Sample No		3	
Specimen Description	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.		Samp	Sample	Тор	1.00
Specimen Description			Depth (m)	Base		
Specimen Reference	7 Specimen 1 m			Sample Typ	е	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2023101630

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	44	
90	100	0.04929	40	
75	100	0.03531	37	
63	100	0.02529	33	
50	100	0.01811	30	
37.5	100	0.00958	23	
28	100	0.00490	16	
20	100	0.00286	12	
14	99	0.00152	9	
10	94			
6.3	86			
5	83			
3.35	77			
2	69			
1.18	65			
0.6	60	Particle density	(assumed)	
0.425	58	2.65	Mg/m3	
0.3	55			
0.212	52			
0.15	47			
0.063	44			

Dry Mass of sample, g	402

Sample Proportions % dry mass	
Cobbles	0.0
Gravel	30.8
Sand	25.7
Silt	33.3
Clay	10.2

Grading Analysis		
D100	mm	
D60	mm	0.611
D30	mm	0.0189
D10	mm	0.00193
Uniformity Coefficient		320
Curvature Coefficient		0.3

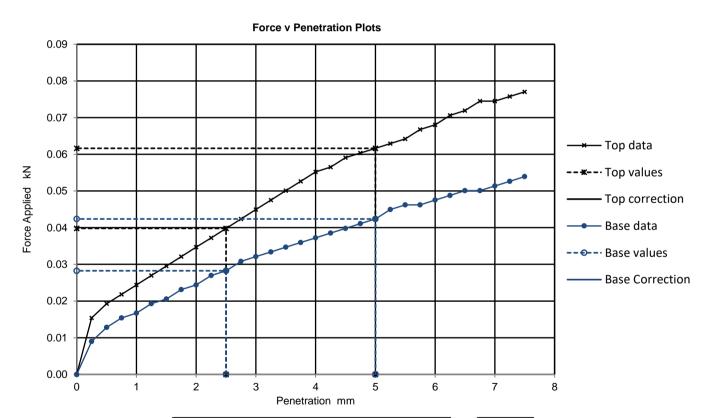

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

California Bearing Ratio (CBR)		Job Ref	23-0881E
		Borehole/Pit No.	BH01
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	6
Soil Description	Brownish grey sandy gravelly silty CLAY.	Depth m	1.20
Specimen Reference	Specimen m Depth	Sample Type	В
Specimen Description	Brownish grey sandy gravelly silty CLAY.	KeyLAB ID	Caus2023101622
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 32 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 2.14 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.87 Mg/m3 kPa

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 0.7 14 TOP No 0.6 0.7 0.7 BASE No 0.7 8.0 0.8 14

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	Stephen Watson


UKAS TESTING

California Bearing Ratio (CBR)		Job Ref	23-0881E
		Borehole/Pit No.	BH02
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	5
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	0.80
Specimen Reference	Specimen m Depth	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.	KeyLAB ID	Caus2023101623
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 3 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 1.93 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.54 Mg/m3 kPa

25

%

Results CBR Values, % Curve correction 2.5mm 5mm Highest Average applied 0.3 0.3 TOP No 0.3 BASE No 0.2 0.2 0.2

Moisture content

General remarks	Test specific remarks	Approved
Tested at natural moisture content.	Average result may be reported if within 10% of the mean CBR value of top and base.	

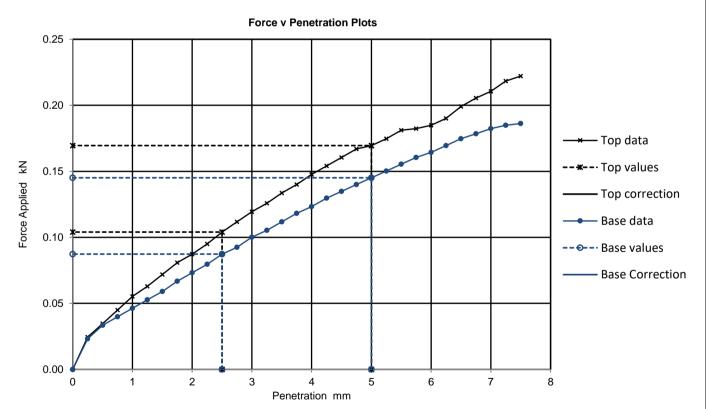
LAB 11R - Version 6

Moisture

Content

%

25


25

CALISEWAY	California Bearing Ratio (CBR)		Job Ref	23-0881E	
CAUSEWAY			Borehole/Pit No.	BH04	
Site Name	NDFA Social Housing	NDFA Social Housing Lot 3 - Oldtown Mill		Sample No.	6
Soil Description	Grey sandy slightly gravelly silty CLAY.		Depth m	0.90	
Specimen Reference	Specimen m Depth		Sample Type	В	
Specimen Description	Grey sandy slightly gravelly silty CLAY.		KeyLAB ID	Caus2023101624	
Test Method	BS1377 : Part 4 : 1990), clause 7		CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 13 % Dry density after soaking Mg/m3 Initial Specimen details 2.02 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.66 Mg/m3 kPa

22

%

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied 0.9 TOP No 0.8 0.9 8.0 BASE No 0.7 0.7 0.7

Moisture content

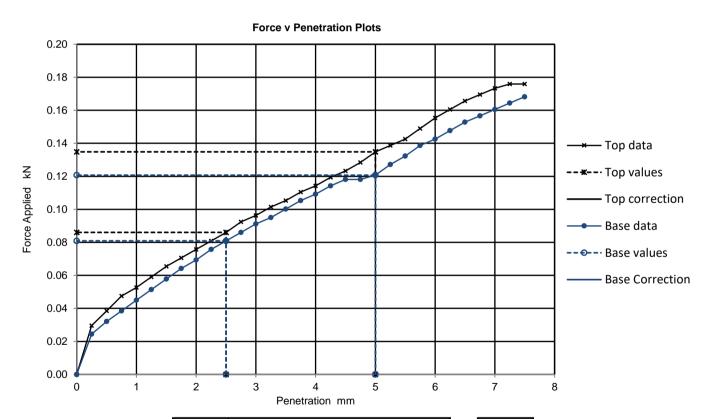
General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

10122

LAB 11R - Version 6

%

22


19

CAUSEWAY	California Bearing Ratio (CBR)	Job Ref	23-0881E
GEOTECH CAMINITING BEATING RAUG (CBR)		Borehole/Pit No.	BH05
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	6
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	1.20
Specimen Reference	Specimen m Depth	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.	KeyLAB ID	Caus2023101625
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 10 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 2.05 4.5 Initial Specimen details Bulk density Mg/m3 Surcharge applied kg Dry density 1.72 Mg/m3 kPa

19

%

Results CBR Values, % Moisture Curve Content correction 2.5mm 5mm Highest Average applied % 0.7 TOP No 0.7 0.7 19 0.6 BASE No 0.6 0.6 0.6 18

Moisture content

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS TESTING

CALISEWAY	California Bearing Ratio (CBR)	Job Ref	23-0881E
CAUSEWAY	GEOTECH Camorina Bearing Ratio (CBR)		TP01
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	3
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	1.00
Specimen Reference	Specimen m Depth	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.	KeyLAB ID	Caus2023101626
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition

Details

Period of soaking
Time to surface
Amount of swell recorded

Material retained on 20mm sieve removed

Soaking details
Period of soaking
Time to surface
Amount of swell recorded

mm

Mg/m3

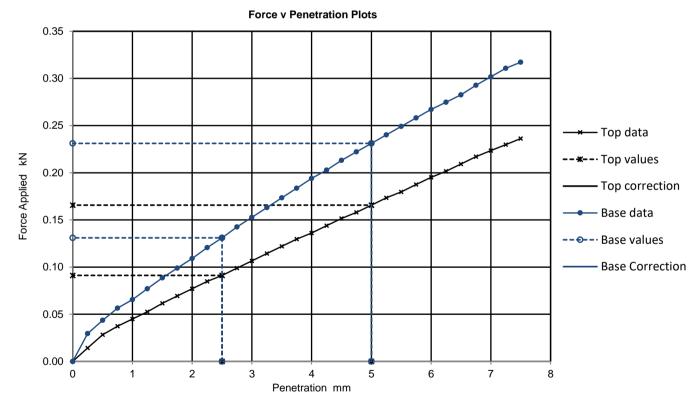
Initial Specimen details Bulk density 2.13 Mg/m3 Surcharge applied 4.5 kg
Dry density 1.85 Mg/m3 3 kPa
Moisture content 15 %

Force v Penetration Plots 0.90 0.80 0.70 · Top data 0.60 Force Applied kN -- Top values 0.50 - Top correction Base data 0.40 - •-- Base values 0.30 - Base Correction 0.20 0.10 0.00 6 5 Penetration mm

Results	Curve		CBR Va	lues, %		Moisture
	correction applied	2.5mm	5mm	Highest	Average	Content %
TOP	No	1.5	1.7	1.7		15
BASE	No	1.9	2.6	2.6		15

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS
TESTING
10122


California Bearing Ratio (CBR)		Job Ref	23-0881E
		Borehole/Pit No.	TP02
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	3
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	1.00
Specimen Reference	Specimen m Depth	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.	KeyLAB ID	Caus2023101627
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 17 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 2.11 4.5 Bulk density Mg/m3 Surcharge applied

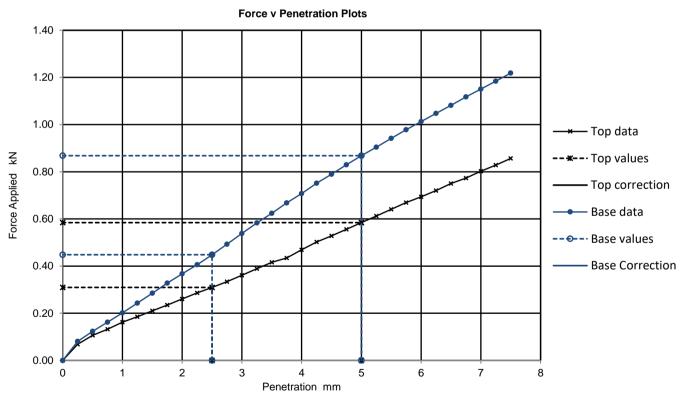
ial Specimen details Bulk density 2.11 Mg/m3 Surcharge applied 4.5 kg

Dry density 1.80 Mg/m3 3 kPa

Moisture content 17 %

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 0.7 0.8 17 TOP No 0.8 BASE No 1.0 1.2 1.2 17

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	


UKAS TESTING

CALISEWAY	California Bearing Ratio (CBR)		Job Ref	23-0881E
CAUSEWAY			Borehole/Pit No.	TP03
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill		Sample No.	3
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.		Depth m	1.00
Specimen Reference	Specimen m Depth		Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.		KeyLAB ID	Caus2023101628
Test Method	BS1377 : Part 4 : 1990, clause 7		CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 15 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 2.12 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.82 Mg/m3 kPa

17

%

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 2.3 2.9 2.9 17 TOP No BASE No 3.4 4.3 4.3 16

Moisture content

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS
TESTING
10122

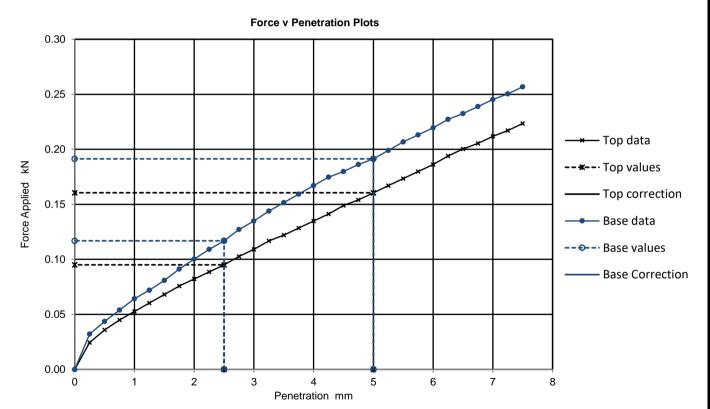
CALISEWAY	California Bearing Ratio (CBR)	Job Ref	23-0881E
CAUSEWAY	Camornia Bearing Ratio (CBR)	Borehole/Pit No.	TP04
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	3
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	1.00
Specimen Reference	Specimen m	Sample Type	В
Specimen Description		KeyLAB ID	Caus2023101629
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 6 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 1.86 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.43 Mg/m3 kPa Moisture content 30 %

Force v Penetration Plots 0.45 0.40 0.35 Top data 0.30 Force Applied kN -· Top values 0.25 - Top correction Base data 0.20 ••-- Base values 0.15 Base Correction 0.10 0.05 0.00 6 Penetration mm

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 1.0 30 TOP No 0.9 1.0 BASE No 1.5 1.5 1.5 30

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	


UKAS
TESTING
10122

CAUSEWAY	California Bearing Ratio (CBR)	Job Ref	23-0881E	
GEOTECH	Camornia Bearing Ratio (CBR)	Borehole/Pit No.	TP06	
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	3	
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	1.00	
Specimen Reference	Specimen m	Sample Type	В	
Specimen Description		KeyLAB ID	Caus2023101630	
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1	

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 14 % Dry density after soaking Mg/m3 Initial Specimen details 2.07 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.76 Mg/m3 kPa

18

%

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 0.7 0.8 18 TOP No 0.8 0.9 BASE No 0.9 1.0 1.0 19

Moisture content

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS
TESTING
10122

Certificate Number 23-25461-1

Issued:

17-Nov-23

Client Causeway Geotech

Unit 1 Fingal House

Stephenstown Industrial Estate

Balbriggan Co. Dublin K32 VR66

Our Reference 23-25461-1

Client Reference 23-0881E

Order No (not supplied)

Contract Title OLDTOWN MILL

Description 9 Soil samples.

Date Received 28-Oct-23

Date Started 30-Oct-23

Date Completed 17-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes This report supersedes 23-25461, amendments made.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-25461-1 Client Ref 23-0881E Contract Title OLDTOWN MILL

Lab No	2254340	2254341	2254343	2254344	2254345	2254346	2254347	2254348	2254349
.Sample ID	BH01	BH02	BH04	BH05	TP01	TP02	TP03	TP04	TP06
Depth	1.20	0.80	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Other ID									
Sample Type	В	В	В	В	В	В	В	В	В
Sampling Date	27/10/2023	27/10/2023	27/10/2023	27/10/2023	27/10/2023	27/10/2023	27/10/2023	27/10/2023	27/10/2023
Sampling Time	n/s								

Test	Method	LOD	Units									
Inorganics												
рН	DETSC 2008#		рН	7.8	7.5	7.9	8.2	8.2	7.5	8.0	7.9	8.2
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	610	610	310	18	120	57	180	75	13

Information in Support of the Analytical Results

Our Ref 23-25461-1 Client Ref 23-0881E Contract OLDTOWN MILL

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2254340	BH01 1.20 SOIL	27/10/23	PT 500ml		
2254341	BH02 0.80 SOIL	27/10/23	PT 500ml		
2254342	BH03 0.90 SOIL	27/10/23	PT 500ml		
2254343	BH04 0.90 SOIL	27/10/23	PT 500ml		
2254344	BH05 1.00 SOIL	27/10/23	PT 500ml		
2254345	TP01 1.00 SOIL	27/10/23	PT 500ml		
2254346	TP02 1.00 SOIL	27/10/23	PT 500ml		
2254347	TP03 1.00 SOIL	27/10/23	PT 500ml		
2254348	TP04 1.00 SOIL	27/10/23	PT 500ml		
2254349	TP06 1.00 SOIL	27/10/23	PT 500ml		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

HEAD OFFICE Causeway Geotech Ltd

NI: +44 (0)28 276 66640

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

21 November 2023

Project Name:	NDFA Social Housing Lot 3 - Oldtown Mill						
Project No.:	23-0881E						
Client:	NDFA						
Engineer:	Malone O'Regan Consulting Engineers						

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 24/10/2023 and 21/11/2023.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: NDFA Social Housing Lot 3 - Oldtown Mill

Report Reference: Schedule 2

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	5
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	5
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	5
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	5
SOIL	California Bearing Ratio (CBR)	BS 1377-4: 1990: Cl 7	4

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	pH Value of Soil		5
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	Sulphate Content water extract		5

Summary of Classification Test Results

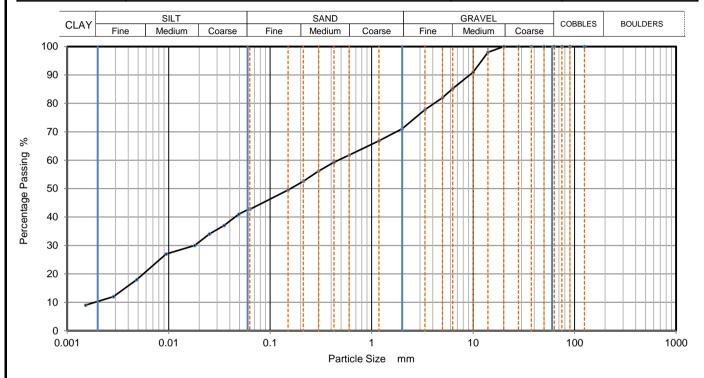
Project No.

Project Name

23-0881E

NDFA Social Housing Lot 3 - Oldtown Mill

		San	nple			Densit		W	Passing	LL	PL	ΡI	Particle	_
Hole No.	Ref	Тор	Base	Туре	Specimen Description	bulk Mg/m	dry	%	425μm %	%	%	%	density Mg/m3	Casagrande Classification
BH06	7	1.20	2.00	В	Brownish grey sandy slightly gravelly silty CLAY.			17	62	32 -1pt	18	14		CL
BH08	5	0.00	1.20	В	Brownish grey sandy slightly gravelly silty CLAY.			18	90	48 -1pt	24	24		CI
BH08	6	1.20	1.70	В	Brownish grey sandy slightly gravelly silty CLAY.			34	69	34 -1pt	20	14		CL
BH11	5	0.00	1.30	В	Brownish grey sandy slightly gravelly silty CLAY.			31	86	47 -1pt	26	21		CI
BH11	8	1.20	1.90	В	Brownish grey sandy slightly gravelly clayey SILT.			16	92	58 -1pt	36	22		МН


All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

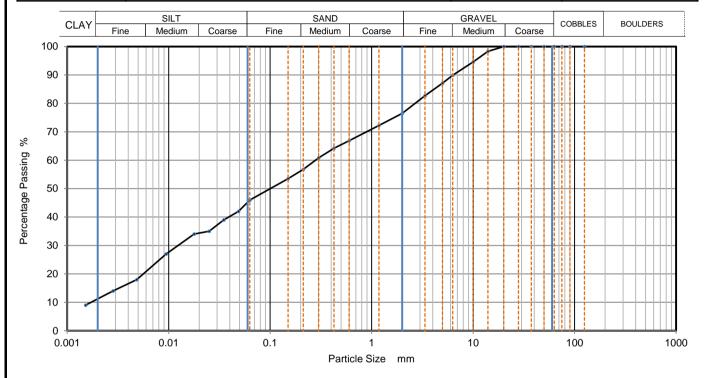
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 21/11/2023 wd - water displacement cas - Casagrande method gj - gas jar wi - immersion in water 1pt - single point test Stephen Watson

CAUSEWAY	DADTI	DARTICLE CIZE DISTRIBUTION					23-0881E
——GEOTECH	GEOTECH PARTICLE SIZE DISTRIBUTION					it No.	вно6
Site Name	NDFA Social Housing L	ot 3 - Oldtown Mi	ill	Sample No.		7	
Specimen Description	Brownish grey sandy sligh	atly gravally silty CL	A.V		Sample	Тор	1.20
specimen bescription	Brownish grey sandy sligh	itty graveny snty CLA	AT.		Depth (m)	Base	2.00
Specimen Reference	6	Specimen Depth	1.2	Sample Type		В	
Test Method	BS1377:Part 2:1990, clau	ses 9.2 and 9.5			KeyLAB ID		Caus20231024111

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	43
90	100	0.04912	41
75	100	0.03519	37
63	100	0.02521	34
50	100	0.01805	30
37.5	100	0.00944	27
28	100	0.00486	18
20	100	0.00285	12
14	98	0.00152	9
10	91		
6.3	85		
5	82		
3.35	78		
2	71		
1.18	67		
0.6	62	Particle density	(assumed)
0.425	59	2.65	Mg/m3
0.3	56		
0.212	53		
0.15	50		
0.063	43		

Dry Mass of sample, g	500

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	28.9
Sand	28.4
Silt	32.2
Clay	10.5


Grading Analysis		
D100	mm	
D60	mm	0.466
D30	mm	0.0173
D10	mm	0.00185
Uniformity Coefficient		250
Curvature Coefficient		0.35

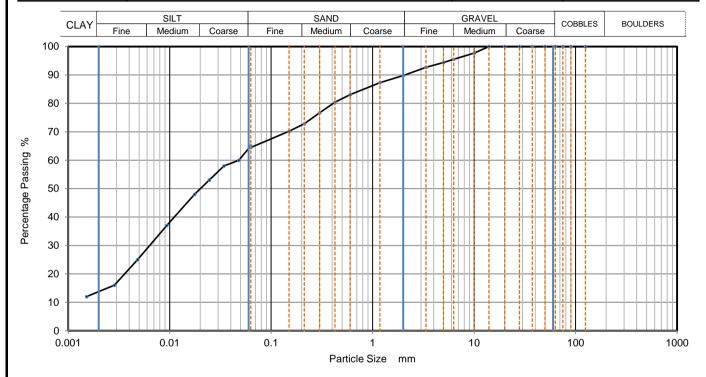
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE CIZE DISTRIBUTION		Job Ref		23-0881E	
———GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.		BH08
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		5
Specimen Description	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.		Samp	Sample	Тор	0.00
specimen bescription			Depth (m)	Base	1.20	
Specimen Reference	8	Specimen Depth	0 m Sample Type		В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus20231024112

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	46
90	100	0.04879	42
75	100	0.03496	39
63	100	0.02505	35
50	100	0.01783	34
37.5	100	0.00944	27
28	100	0.00486	18
20	100	0.00284	14
14	98	0.00152	9
10	95		
6.3	90		
5	87		
3.35	83		
2	77		
1.18	72		
0.6	67	Particle density	(assumed)
0.425	64	2.65	Mg/m3
0.3	61		
0.212	57		
0.15	54		
0.063	46		

Dry Mass of sample, g	511
-----------------------	-----

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	23.5
Sand	30.5
Silt	34.8
Clay	11.2


Grading Analysis		
D100	mm	
D60	mm	0.28
D30	mm	0.0129
D10	mm	0.00174
Uniformity Coefficient		160
Curvature Coefficient		0.34

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CALISEWAY	DARTICLE CIZE DISTRIBUTION			Job Ref		23-0881E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		внов		
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		6	
Specimen Description	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.			Sample	Тор	1.20	
Specimen Description	Brownish grey sandy sligi	itiy graveliy siity CD	AT.		Depth (m)	Base	1.70
Specimen Reference	6 Specimen 1.2 m			Sample Type		В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus20231024113	

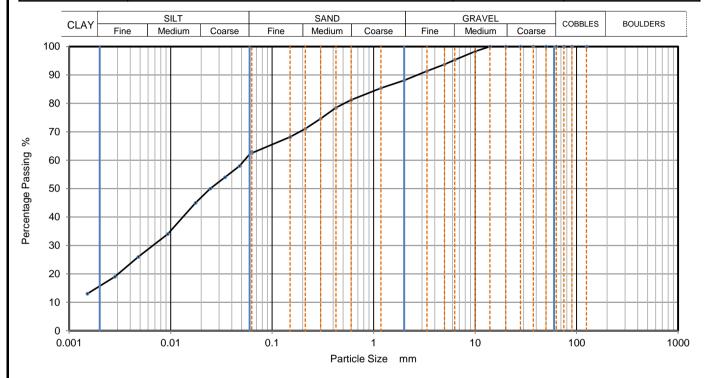
Siev	/ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	65		
90	100	0.04812	60		
75	100	0.03426	58		
63	100	0.02456	53		
50	100	0.01760	48		
37.5	100	0.00938	37		
28	100	0.00483	25		
20	100	0.00285	16		
14	100	0.00152	12		
10	98				
6.3	96				
5	94				
3.35	93				
2	90				
1.18	87				
0.6	83	Particle density	(assumed)		
0.425	80	2.65	Mg/m3		
0.3	77				
0.212	73				
0.15	70				
0.063	65				

Dry Mass of sample, g	508
	· · · · · · · · · · · · · · · · · · ·

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	10.2		
Sand	25.3		
Silt	51.0		
Clay	13.5		

Grading Analysis		
D100	mm	
D60	mm	0.0484
D30	mm	0.00632
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks


Preparation and testing in accordance with BS1377-2 :1990 unless noted below

LAB 05R - Version 6

CAUSEWAY	DARTICLE CIZE DISTRIBUTION			Job Ref		23-0881E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		BH11		
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		5	
Specimen Description	Specimen Description Brownish grey sandy slightly gravelly silty CLAY.			Sample	Тор	0.00	
specimen bescription	srownish grey sandy slightly gravelly slity CLAY.			Depth (m)	Base	1.30	
Specimen Reference	Specimen 0 m Depth			Sample Type		В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus20231024114

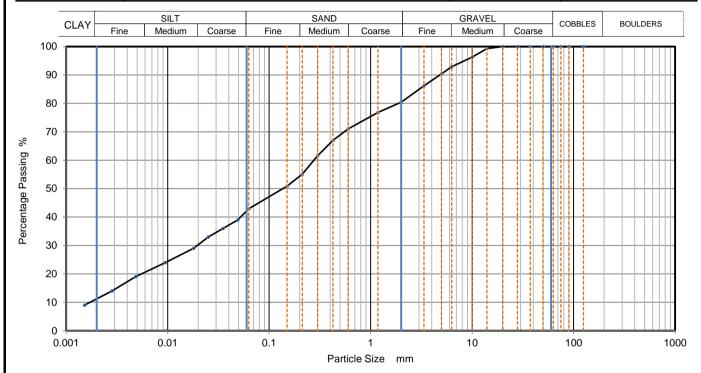
Siev	ving	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	63		
90	100	0.04779	58		
75	100	0.03426	54		
63	100	0.02456	50		
50	100	0.01760	45		
37.5	100	0.00938	34		
28	100	0.00480	26		
20	100	0.00282	19		
14	100	0.00151	13		
10	98				
6.3	95				
5	94				
3.35	91				
2	88				
1.18	85				
0.6	81	Particle density	(assumed)		
0.425	79	2.65	Mg/m3		
0.3	75				
0.212	71				
0.15	68				
0.063	63				

Dry Mass of sample, g 439

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	11.9		
Sand	25.6		
Silt	46.7		
Clay	15.8		

Grading Analysis		
D100	mm	
D60	mm	0.0537
D30	mm	0.00662
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks


Preparation and testing in accordance with BS1377-2 :1990 unless noted below

LAB 05R - Version 6

CAUSEWAY	ALISEWAY DARTICLE CIZE DISTRIBUTION			Job Ref		23-0881E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		BH11		
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill			Sample No.		8	
Specimen Description	Specimen Description Brownish grey sandy slightly gravelly clayey SILT.			Sample	Тор	1.20	
specimen bescription	Brownish grey sandy sligh	oy siigntiy graveiiy ciayey SiLi.			Depth (m)	Base	1.90
Specimen Reference	8 Specimen 1.2 m			Sample Type		В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus20231024115

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	43
90	100	0.04912	39
75	100	0.03519	36
63	100	0.02521	33
50	100	0.01805	29
37.5	100	0.00949	24
28	100	0.00483	19
20	100	0.00284	14
14	99	0.00152	9
10	96		
6.3	93		
5	90		
3.35	86		
2	80		
1.18	77		
0.6	71	Particle density	(assumed)
0.425	67	2.65	Mg/m3
0.3	62		
0.212	55		
0.15	51		
0.063	43		

	0/ 1
Dry Mass of sample, g	508

Sample Proportions	% dry mass	
Cobbles 0.0		
Gravel	19.6	
Sand	37.5	
Silt	32.0	
Clay	10.9	

Grading Analysis		
D100	mm	
D60	mm	0.276
D30	mm	0.0196
D10	mm	0.0018
Uniformity Coefficient		150
Curvature Coefficient		0.77

Remarks

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

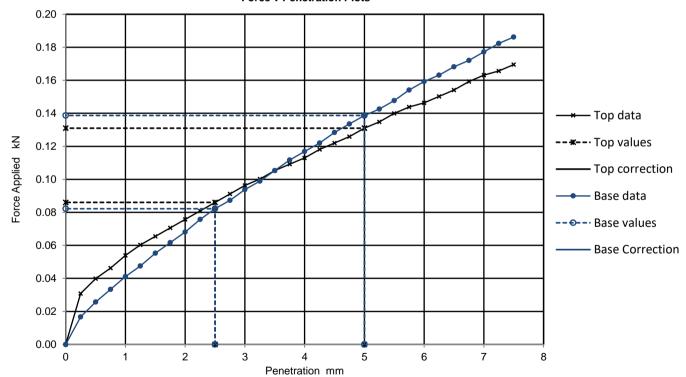
LAB 05R - Version 6

California Bearing Ratio (CBR)		Job Ref	23-0881E		
		Borehole/Pit No.	ВН06		
Site Name	NDFA Social Housing Lot 3	IDFA Social Housing Lot 3 - Oldtown Mill		Sample No.	4
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.		Depth m	0.00	
Specimen Reference	l '	pecimen epth	m	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.		KeyLAB ID	Caus20231024110	
Test Method	BS1377 : Part 4 : 1990, clau	use 7		CBR Test Number	1

Condition REMOULDED Soaking details Not soaked

Details Recompacted with specified standard effort using 2.5kg Period of soaking days rammer Time to surface days

Ammer Time to surface days


Amount of swell recorded mm

Material retained on 20mm sieve removed 9 % Dry density after soaking Mg/m3

Initial Specimen details Bulk density 1.97 Mg/m3 Surcharge applied 4.5 kg

Dry density 1.59 Mg/m3 Moisture content 24 %

Force v Penetration Plots

Results

TOP BASE

Curve		CBR Values, %		
correction applied	2.5mm	5mm	Highest	Average
No	0.7	0.7	0.7	0.7
No	0.6	0.7	0.7	0.7

Moisture Content % 24 23

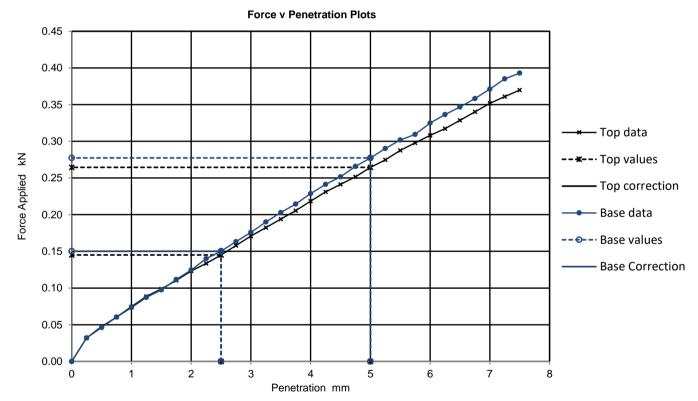
General remarks	Test specific remarks	Approved
Tested at natural moisture content.	Average result may be reported if within 10% of the mean CBR value of top and	
	base.	

LAB 11R - Version 6

kPa

CAUSEWAY	SEWAY California Bearing Ratio (CBR)		23-0881E
—— GEOTECH	California Bearing Natio (CDN)	Borehole/Pit No.	BH08
Site Name	NDFA Social Housing Lot 3 - Oldtown Mill	Sample No.	5
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.	Depth m	0.00
Specimen Reference	Specimen m Depth	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.	KeyLAB ID	Caus20231024112
Test Method	BS1377 : Part 4 : 1990, clause 7	CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 10 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 2.14 4.5 Initial Specimen details Bulk density Mg/m3 Surcharge applied kg


Dry density

1.87 Mg/m3 Surcharge applied

4.5 kg

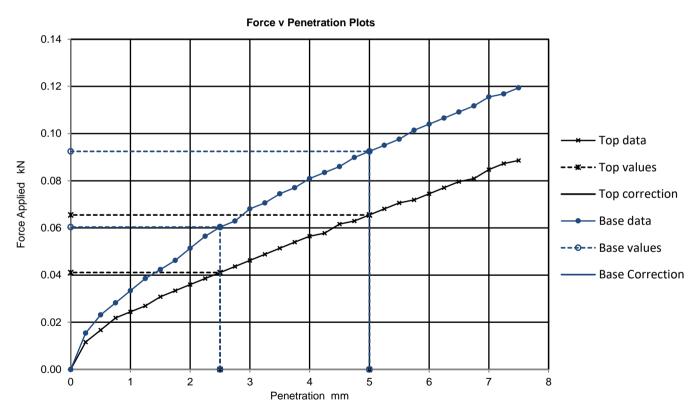
Moisture content

15 %

Results CBR Values, % Moisture Curve Content correction 2.5mm 5mm Highest Average applied % 1.3 15 TOP No 1.1 1.3 1.4 BASE No 1.1 1.4 1.4 14

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS
TESTING
10122


LAB 11R - Version 6

CALISEWAY	California Bearing Ratio (CBR)		Job Ref	23-0881E
CAUSEWAY	Camornia Bearn	ig Ratio (CBR)	Borehole/Pit No.	BH11
Site Name	NDFA Social Housing Lot 3 - Oldto	DFA Social Housing Lot 3 - Oldtown Mill		5
Soil Description	Brownish grey sandy slightly gravelly silty CLAY.		Depth m	0.00
Specimen Reference	Specimer Depth	m	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.		KeyLAB ID	Caus20231024114
Test Method	BS1377 : Part 4 : 1990, clause 7		CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 4 % Dry density after soaking Mg/m3 Initial Specimen details 1.80 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.35 Mg/m3 kPa

34

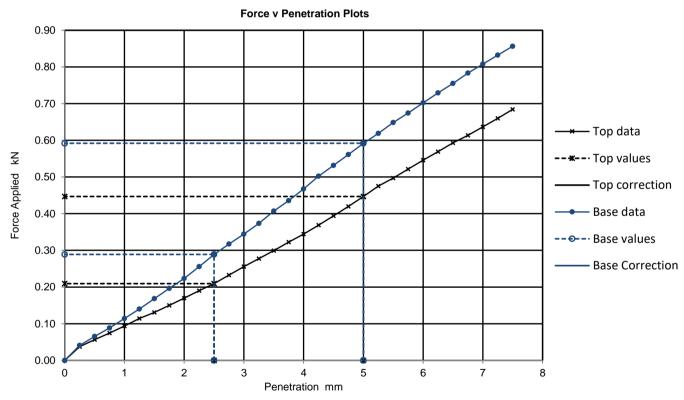
%

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 0.3 0.3 34 TOP No 0.3 BASE No 0.5 0.5 0.5 34

Moisture content

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS TESTING


LAB 11R - Version 6

CAUSEWAY	California Posring Potio (CPP)		Job Ref	23-0881E	
GEOTECH GEOTECH	Camorn	alifornia Bearing Ratio(CBR) -		Borehole/Pit No.	BH11
Site Name	NDFA Social Housing I	IDFA Social Housing Lot 3 - Oldtown Mill		Sample No.	8
Soil Description	Brownish grey sandy slightly gravelly clayey SILT.		Depth m	1.20	
Specimen Reference		Specimen Depth	m	Sample Type	В
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.		KeyLAB ID	Caus20231024115	
Test Method	BS1377 : Part 4 : 1990	, clause 7		CBR Test Number	1

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 3 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 2.07 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.79 Mg/m3 kPa

16

%

Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 2.2 2.2 TOP No 1.6 16 BASE No 2.2 3.0 3.0 15

Moisture content

General remarks	Test specific remarks	Approved
	Average result may be reported if within 10% of the mean CBR value of top and base.	

UKAS TESTING

LAB 11R - Version 6

Certificate Number 23-26102 Issued: 13-Nov-23

Client Causeway Geotech

8 Drumahiskey Road

Ballymoney County Antrim BT53 7QL

Our Reference 23-26102

Client Reference 23-0881E

Order No (not supplied)

Contract Title OLDTOWN MILL

Description 5 Soil samples.

Date Received 04-Nov-23

Date Started 06-Nov-23

Date Completed 13-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Semond

Derwentside Environmental Testing Services Limited
Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY
Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Our Ref 23-26102 Client Ref 23-0881E Contract Title OLDTOWN MILL

Lab No	2258374	2258375	2258376	2258377	2258378
.Sample ID	BH06	BH08	BH08	BH11	BH11
Depth	1.20	0.00	1.20	0.00	1.20
Other ID	7	5	6	5	8
Sample Type	В	В	В	В	В
Sampling Date	31/10/2023	31/10/2023	31/10/2023	31/10/2023	31/10/2023
Sampling Time	n/s	n/s	n/s	n/s	n/s

rest	wethod	LOD	Units					
Inorganics								
рН	DETSC 2008#		рН	8.0	7.8	8.2	7.9	7.8
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	25	17	20	11	17

Information in Support of the Analytical Results

Our Ref 23-26102 Client Ref 23-0881E Contract OLDTOWN MILL

Containers Received & Deviating Samples

		Date		exceeded f	or container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2258374	BH06 1.20 SOIL	31/10/23	PT 500ml		
2258375	BH08 0.00 SOIL	31/10/23	PT 500ml		
2258376	BH08 1.20 SOIL	31/10/23	PT 500ml		
2258377	BH11 0.00 SOIL	31/10/23	PT 500ml		
2258378	BH11 1.20 SOIL	31/10/23	PT 500ml		

Kev: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

HEAD OFFICE Causeway Geotech Ltd

8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

> Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 **ROI**: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

20 December 2023

Project Name:	NDFA Social Housing Lot 3 - Oldtown Mill
Project No.:	23-0881E
Client:	NDFA
Engineer:	Malone O'Regan Consulting Engineers

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 05/12/2023 and 20/12/2023.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: NDFA Social Housing Lot 3 - Oldtown Mill

Report Reference: Schedule 3 - ROCK

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
ROCK	Point load index	ISRM Commission on Testing Methods. Suggested Method for Determining Point Load Strength 1985	6
ROCK	Uniaxial Compressive Strength (UCS)*	ISRM Suggested Methods -Rock Characterization Testing and Monitoring, Ed. E T Brown - 1981	2

200000				_								_		_				
• D	AUSEV	VA)					Ро				eng			Test	S			
Project No.	3.0			Proje	ect Name)			Juli	ıııal	y UI	1762	นเเธ					
:	23-0881E							NDFA	A Socia	al Hou	sing Lo	ot 3 - O	ldtown	Mill				
Borehole	Sa	ample		Spe	ecimen			Type ISRM	(N/Y) bi		Dime	ensions		Force P	Equivalent diameter, De	Point Load Strength Index		Remarks (including
No.	Depth	Ref.	Туре	Ref.	Depth	Rock Type	Type J, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	, 	Equivale	Is	Is(5 0)	water content if measured)
D004	m				m	LIMESTONE	+			mm	mm	mm	mm	kN	mm	MPa	MPa	
RC01	4.00		С	2	4.00	LIMESTONE	A	U	NO		100.1	101.0	90.0	26.5	107.1	2.3	3.3	
RC01	4.50		С	2	4.50		D	U	YES	74.9	100.6	100.6	98.0	14.3	99.3	1.5	2.0	
RC01	4.65		С	2	4.65	LIMESTONE	Α	U	YES		100.9	75.0	73.0	7.4	96.8	0.8	1.1	
RC02	4.76		С	2	4.76	LIMESTONE	D	U	YES	68.7	100.1	100.1	97.0	15.6	98.5	1.6	2.2	
RC02	4.93		С	2	4.93	LIMESTONE	А	U	YES		100.2	105.0	100.0	11.4	113.0	0.9	1.3	
RC03	5.30		С	2	5.30	LIMESTONE	D	U	YES	66.8	99.5	99.5	91.0	5.0	95.2	0.6	0.7	
Test Type																		
D - Diametral, A Direction L - parallel to pla P - perpendicula U - unknown or or Dimensions Dps - Distance b Dps' - at failure (Lne - Length froor W - Width of st	anes of weakr or to planes of random petween plate (see ISRM no m platens to i	ness weakr ens (pla ote 6) neares	ness aten se	paratio	D _{ps}	P (W)	D _{ps}	Axial	P	L _r	ne 🖈	W	ek	•	D _{ps}	4	w ₁	P D _{ps}
Test performed in Detailed legend	for test and d	limensi	ons, ba			ds : 1985, unless no shown above.	oted othe	rwise			Date F	Printed 0/12/20	23	Appro	ved B	у	lumbund	JKAS

LAB 17R - Version 5

10122

Stephen Watson

UNIAXIAL COMPRESSION TEST ON ROCK - SUMMARY OF RESULTS

Project No.

Project Name

23-0881E

NDFA Social Housing Lot 3 - Oldtown Mill

		Sar	nple			S Dir	pecime mensior	n ns2	Bulk	Water Content		al Compre	ession3	
Hole No.	Ref	Тор	Base	Туре	Rock Type	Dia.	Length mm	H/D	Density2 Mg/m3	1 %	Condition	Mode of failure	UCS MPa	Remarks
RC02		3.30		С	LIMESTONE	100.3	201.4	2.0	2.72	0.3	as received	F	81.6	
RC03		2.50		С	LIMESTONE	100.5	197.6	2.0	2.67	0.6	as received	MS	26.5	

2 ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density

3 ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials

above notes apply unless annotated otherwise in the remarks

S - Single shear

MS - multiple shear

AC - Axial cleavage

F - Fragmented

abore notes apply amos amotated entermos in the formation				
Test Specification	Date Printed	Approved By	Table	
International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007	20/12/2023		sheet	1
		Stephen Watson		1

APPENDIX J ENVIRONMENTAL LABORATORY TEST RESULTS

Certificate of Analysis

Certificate Number 23-25557

Issued:

07-Nov-23

Client Causeway Geotech

Unit 1 Fingal House

Stephenstown Industrial Estate

Balbriggan Co. Dublin K32 VR66

Our Reference 23-25557

Client Reference 23-0881E

Order No (not supplied)

Contract Title NDFA SOCIAL HOUSING

Description 13 Soil samples, 13 Leachate samples.

Date Received 30-Oct-23

Date Started 30-Oct-23

Date Completed 07-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254893	2254894	2254895	2254896	2254897	2254898	2254899
.Sample ID	BH03A	BH04	TP05	TP05	BH01	BH03	TP01
Depth	0.50	0.50	0.50	1.00	0.50	0.50	0.50
Other ID							
Sample Type	ES						
Sampling Date	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	11/10/2023
Sampling Time	n/s						

Test	Method	LOD	Units							
Preparation										
Moisture Content	DETSC 1004	0.1	%	8.7	21	12	8.7	10	10	5.7
Metals										
Antimony	DETSC 2301*	1	mg/kg	1.2	3.3	2.0	2.4	1.3	1.7	< 1.0
Arsenic	DETSC 2301#	0.2	mg/kg	5.8	22	11	11	7.0	8.8	7.5
Barium	DETSC 2301#	1.5	mg/kg	17	61	51	26	25	23	24
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	0.3
Cadmium	DETSC 2301#	0.1	mg/kg	2.8	9.6	3.6	3.6	1.8	2.7	1.7
Chromium	DETSC 2301#	0.15	mg/kg	3.9	19	7.7	7.9	6.7	5.1	5.3
Chromium III	DETSC 2301*	0.15	mg/kg	3.9	19	7.7	7.9	6.7	5.1	5.3
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	12	49	25	27	15	21	11
Lead	DETSC 2301#	0.3	mg/kg	9.8	23	14	15	6.2	12	4.7
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	4.3	16	5.3	6.4	4.6	4.4	3.6
Nickel	DETSC 2301#	1	mg/kg	23	91	41	45	25	32	19
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	7.0	0.8	0.8	1.9	0.7	1.6
Zinc	DETSC 2301#	1	mg/kg	68	150	110	120	62	89	48
Inorganics										
рН	DETSC 2008#		рН	8.2	7.1	8.0	8.1	7.8	8.1	8.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%	2.4	1.3	1.3	1.2	2.3	1.7	2.2
Sulphide	DETSC 2024*	10	mg/kg	24	< 10	51	91	83	91	130
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	1.1	< 0.75	< 0.75	< 0.75	< 0.75	0.92
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.04	0.32	0.04	0.05	0.22	0.04	0.21
Petroleum Hydrocarbons										
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL		1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL		1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL		1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL		3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR		0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR		0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4

Our Ref 23-25557
Client Ref 23-0881E

Contract Title NDFA SOCIAL	HOUSING									
CONTRACT THE NOTA SOCIAL	. HOUSING		Lab No	2254902	2254904	225,4805	2254806	2254907	225,4000	2254899
		٠.		2254893 BH03A	2254894 BH04	2254895 TP05	2254896 TP05	2254897 BH01	2254898 BH03	7254899 TP01
		.Sa	mple ID							
			Depth	0.50	0.50	0.50	1.00	0.50	0.50	0.50
			Other ID							
		_	ole Type	ES	ES		ES	ES		ES
		_	_			10/10/2023				
T	8.0 - AlI	=	ng Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	. 1 . 1	. 1 1	. 1 1	. 1 1	. 1 1	. 1 1	. 1 . 1
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C10-C44: EH_CU_1D_AR		10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Ali/Aro C10-C44: EH_CU_1D_Total		10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
		4.0	/1	4.0	4.0	10	4.0	4.0	10	10
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DETSC 3311#	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
PAHs			,							
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Coronene	DETSC 3301*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
PCBs										
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		
PCB 180	DETSC 3401#	0.01	mg/kg		< 0.01		< 0.01	< 0.01		
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		
Phenols			<i>3i</i> · ·0							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
		0.0	0′′ ان	0.0	0.0	. 0.0	. 0.0	. 0.0	0.5	0.0

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254900	2254901	2254902	2254903	2254904	2254905
.Sample ID	TP01	TP02	TP03	TP04	TP06	TP06
Depth	1.00	0.50	0.50	0.50	0.50	1.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Preparation									
Moisture Content	DETSC 1004	0.1	%	11	9.6	7.4	13	16	16
Metals									
Antimony	DETSC 2301*	1	mg/kg	1.8	1.5	1.9	2.0	2.5	1.8
Arsenic	DETSC 2301#	0.2	mg/kg	9.1	9.7	9.4	9.8	14	10
Barium	DETSC 2301#	1.5	mg/kg	17	28	19	29	49	37
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2	0.3	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	3.6	2.7	2.4	3.6	3.8	3.1
Chromium	DETSC 2301#	0.15	mg/kg	7.1	7.8	6.2	8.8	14	10
Chromium III	DETSC 2301*	0.15	mg/kg	7.1	7.8	6.2	8.8	14	10
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	20	22	21	24	33	24
Lead	DETSC 2301#	0.3	mg/kg	6.0	9.9	11	9.1	21	15
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	6.4	4.2	6.5	5.9	5.5	4.7
Nickel	DETSC 2301#	1	mg/kg	37	37	40	38	51	40
Selenium	DETSC 2301#	0.5	mg/kg	0.9	0.8	3.1	1.1	1.4	1.0
Zinc	DETSC 2301#	1	mg/kg	81	99	76	100	130	100
Inorganics									
рН	DETSC 2008#		рН	8.1	8.2	7.7	8.0	7.9	8.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.1
Total Organic Carbon	DETSC 2084#	0.5	%	1.8	1.2	1.6	1.1	1.0	1.1
Sulphide	DETSC 2024*	10	mg/kg	87	43	110	55	43	32
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.07	0.04	0.71	0.06	0.06	0.06
Petroleum Hydrocarbons									
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR		0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL	HOUSING								
			Lab No	2254900	2254901	2254902	2254903	2254904	2254905
		.Sa	ample ID	TP01	TP02	TP03	TP04	TP06	TP06
			Depth	1.00	0.50	0.50	0.50	0.50	1.00
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			<u> </u>						
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DETSC 3311#	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
PAHs									
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Coronene	DETSC 3301*	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg		< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
PCBs									
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 138	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 180	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
PCB 7 Total	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Phenols	•		<u> </u>						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
			<u> </u>						

Summary of Chemical Analysis Leachate Samples

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254906	2254907	2254908	2254909	2254910	2254911	2254912	2254913	2254914	2254915	2254916
.Sample ID	вноза	BH04	TP05	TP05	BH01	BH03	TP01	TP01	TP02	TP03	TP04
Depth	0.50	0.50	0.50	1.00	0.50	0.50	0.50	1.00	0.50	0.50	0.50
Other ID											
Sample Type	ES										
Sampling Date	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Sampling Time	n/s										

Test	Method	LOD	Units											
Preparation														
BS EN 12457 10:1	DETSC 1009*			Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Inorganics														
Un-Ionised Ammonia	*	0.02	mg/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ammoniacal Nitrogen as NH4	DETSC 2207	0.0193	mg/l	< 0.02	< 0.02	< 0.02	0.03	0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02

Key: *-not accredited. n/s-not supplied.

Summary of Chemical Analysis Leachate Samples

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254917	2254918
.Sample ID	TP06	TP06
Depth	0.50	1.00
Other ID		
Sample Type	ES	ES
Sampling Date	11/10/2023	11/10/2023
Sampling Time	n/s	n/s

Test	Method	LOD	Units		
Preparation					
BS EN 12457 10:1	DETSC 1009*			Υ	Υ
Inorganics					
Un-Ionised Ammonia	*	0.02	mg/l	< 0.02	< 0.02
Ammoniacal Nitrogen as NH4	DETSC 2207	0.0193	mg/l	0.02	< 0.02

Key: *-not accredited. n/s -not supplied.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH03A 0.50

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254893 2254906 Date Analysed 07/11/2023

WAC Limit Values

Test Results On Waste					WAC Limit values		
Determinand and Method Reference		Units	Result	4	Inert Waste	SNRHW	Hazardous Waste
DETSC 2084# Total Organic Carbon		%	2.4	1	3	5	6
DETSC 2003# Loss On Ignition	•		1.6		n/a	n/a	10
DETSC 3321# BTEX		% mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.04		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH 1D Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	8.2		n/a	>6	n/a
DETSC 2003, pri DETSC 2073* Acid Neutralisation Capacity (p	h4)	mol/kg	3.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	•	mol/kg	< 1.0		n/a	TBE	TBE
		, , ,	<u>!</u>	7		AC Limit Va	
Test Results On Leachate						ues for LS1	
	Conc in E	luate ug/l	Amount Leached* mg/kg	7	Inert		Hazardous
Determinand and Method Reference):1	LS10	1	Waste	SNRHW	Waste
DETSC 2306 Arsenic as As	0.	22	< 0.01	1	0.5	2	25
DETSC 2306 Barium as Ba	2	.1	< 0.1		20	100	300
DETSC 2306 Cadmium as Cd	< 0.	.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr	0.	52	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	0.	71	< 0.02		2	50	100
DETSC 2306 Mercury as Hg	< 0.	.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	1	.2	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	0.	77	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	0.	19	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se	0.	44	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	2	.8	0.028		4	50	200
DETSC 2055 Chloride as Cl	14	100	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	60	000	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	42	000	420		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information			_		TBE -	To Be Evalua	ated
DETSC 2008 pH	8	.1			SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	60	0.0				Hazardous V	Vaste
* Temperature*	18	3.0]				
Mass of Sample Kg*	0.1	110					
Mass of dry Sample Kg*	0.1	100					
Stage 1	4						
	7						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.995

0.94

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH04 0.50

Sample Numbers 2254894 2254907 Date Analysed 07/11/2023

Test Results On Waste							
Determinand and Method Reference	Units	Result					
DETSC 2084# Total Organic Carbon	%	1.3					
DETSC 2003# Loss On Ignition	%	4.8					
DETSC 3321# BTEX	mg/kg	< 0.04					
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01					
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10					
DETSC 3301 PAHs	mg/kg	< 1.6					
DETSC 2008# pH	pH Units	7.1					
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0					
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0					

W	WAC Limit Values								
Inert	SNRHW	Hazardous							
Waste	SINULIAN	Waste							
3	5	6							
n/a	n/a	10							
6	n/a	n/a							
1	n/a	n/a							
500	n/a	n/a							
100	n/a	n/a							
n/a	>6	n/a							
n/a	TBE	TBE							
n/a	TBE	TBE							

Test	Resu	ltς	On	Leac	hate
1636	11C3U	11.3	OII	LCal	IIalc

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg		
Determinand and Method Reference	10:1	LS10		
DETSC 2306 Arsenic as As	< 0.16	< 0.01		
DETSC 2306 Barium as Ba	3.3	< 0.1		
DETSC 2306 Cadmium as Cd	0.053	< 0.02		
DETSC 2306 Chromium as Cr	< 0.25	< 0.1		
DETSC 2306 Copper as Cu	0.5	< 0.02		
DETSC 2306 Mercury as Hg	< 0.010	< 0.002		
DETSC 2306 Molybdenum as Mo	1.7	< 0.1		
DETSC 2306 Nickel as Ni	0.77	< 0.1		
DETSC 2306 Lead as Pb	< 0.090	< 0.05		
DETSC 2306 Antimony as Sb	< 0.17	< 0.05		
DETSC 2306 Selenium as Se	1.9	< 0.03		
DETSC 2306 Zinc as Zn	< 1.3	< 0.01		
DETSC 2055 Chloride as Cl	660	< 100		
DETSC 2055* Fluoride as F	170	1.7		
DETSC 2055 Sulphate as SO4	69000	690		
DETSC 2009* Total Dissolved Solids	160000	1600		
DETSC 2130 Phenol Index	< 100	<1		
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50		

WAC Limit Values							
Limit val	ues for LS10) Leachate					
Inert	SNRHW	Hazardous					
Waste	SINULIAN	Waste					
0.5	2	25					
20	100	300					
0.04	1	5					
0.5	10	70					
2	50	100					
0.01	0.2	2					
0.5	10	30					
0.4	10	40					
0.5	10	50					
0.06	0.7	5					
0.1	0.5	7					
4	50	200					
800	15,000	25,000					
10	150	500					
1000	20,000	50,000					
4000	60,000	100,000					
1	n/a	n/a					
500	800	1000					

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Additional Information
DETSC 2008 pH

DETSC 2008 pH 7.4

DETSC 2009 Conductivity uS/cm 232.0

* Temperature* 18.0

Mass of Sample Kg* 0.130

Mass of dry Sample Kg* Stage 1

V.2.06

Volume of Leachant L2* 1
Volume of Eluate VE1* 0.95

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.103

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP05 0.50

Additional Information

DETSC 2009 Conductivity uS/cm

DETSC 2008 pH

* Temperature*

Stage 1

V.2.06

Mass of Sample Kg*

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2254895 2254908 Date Analysed 07/11/2023

Test Results On Waste				11	W	AC Limit Va	lues
Test Results Off Waste					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result		Waste		Waste
DETSC 2084# Total Organic Carbon		%	1.3		3	5	6
DETSC 2003# Loss On Ignition		%	2.4	Ш	n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04	Ш	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	Ш	1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	Ш	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6	Ш	100	n/a	n/a
DETSC 2008# pH		pH Units	8.0	Ш	n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (p	H4)	mol/kg	3.0	Ш	n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	H7)	mol/kg	< 1.0] [n/a	TBE	TBE
Test Results On Leachate				11	WAC Limit Values		lues
Test Nesuits On Leachate					Limit values for LS10 Leach		
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg		Inert	SNRHW	Hazardous
		0:1	LS10		Waste		Waste
DETSC 2306 Arsenic as As		19	< 0.01	Ш	0.5	2	25
DETSC 2306 Barium as Ba		.1	< 0.1	Ш	20	100	300
DETSC 2306 Cadmium as Cd	< 0	.030	< 0.02	Ш	0.04	1	5
DETSC 2306 Chromium as Cr	< 0).25	< 0.1	Ш	0.5	10	70
DETSC 2306 Copper as Cu		77	< 0.02	Ш	2	50	100
DETSC 2306 Mercury as Hg	< 0	.010	< 0.002	Ш	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	<	1.1	< 0.1	Ш	0.5	10	30
DETSC 2306 Nickel as Ni	0.	57	< 0.1	Ш	0.4	10	40
DETSC 2306 Lead as Pb	< 0	.090	< 0.05	Ш	0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05	Ш	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0).25	< 0.03	Ш	0.1	0.5	7
DETSC 2306 Zinc as Zn	7	.5	0.075	Ш	4	50	200
DETSC 2055 Chloride as Cl	9	10	< 100	Ш	800	15,000	25,000
DETSC 2055* Fluoride as F	< 2	100	< 0.1	Ш	10	150	500
DETSC 2055 Sulphate as SO4	27	700	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	36	000	360		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

8.5

51.2

18.0

0.110

0.097

0.953

0.9

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP05 1.00

Sample Numbers 2254896 2254909 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.2
DETSC 2003# Loss On Ignition	%	2.6
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.1
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	2.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

W	AC Limit Va	lues
Inert	SNRHW	Hazardous
Waste	SINITION	Waste
3	5	6
n/a	n/a	10
6	n/a	n/a
1	n/a	n/a
500	n/a	n/a
100	n/a	n/a
n/a	>6	n/a
n/a	TBE	TBE
n/a	TBE	TBE

WAC Limit Values

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	< 0.16	< 0.01
DETSC 2306 Barium as Ba	2.3	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.62	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	< 0.090	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	< 0.25	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	1400	< 100
DETSC 2055* Fluoride as F	110	1.1
DETSC 2055 Sulphate as SO4	3500	< 100
DETSC 2009* Total Dissolved Solids	38000	380
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

Į vv.	AC LIIIIIL Va	iues
Limit val	ues for LS10) Leachate
Inert	SNRHW	Hazardous
Waste	SINULIAN	Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000
10	150	500
1000	20,000	50,000
4000	60,000	100,000
1	n/a	n/a
500	800	1000

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Additional Information

DETSC 2008 pH 8.6

DETSC 2009 Conductivity uS/cm 54.8

* Temperature* 18.0

Mass of Sample Kg*

Mass of dry Sample Kg*

0.110

Stage 1

V.2.06

Volume of Leachant L2* 0.994
Volume of Eluate VE1* 0.94

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH01 0.50

Mass of Sample Kg*

Stage 1

V.2.06

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2254897 2254910 Date Analysed 07/11/2023

Test Results On Waste					W	AC Limit Va	lues
rest Results On Waste					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result		Waste	SINULIAN	Waste
DETSC 2084# Total Organic Carbon	%		2.3		3	5	6
DETSC 2003# Loss On Ignition	%		2.0		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.8		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (oH4)	mol/kg	4.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (oH7)	mol/kg	< 1.0		n/a	TBE	TBE
Took Bossilks On Look sky			•	Ť	WAC Limit Values		
Test Results On Leachate					Limit val	ues for LS10	O Leachate
Determined and Mathed Defenses	Conc in E	luate ug/l	Amount Leached* mg/l	g	Inert	CNIDLINA	Hazardous
Determinand and Method Reference	10	0:1	LS10		Waste	SNRHW	Waste
DETSC 2306 Arsenic as As	0.	22	< 0.01		0.5	2	25
DETSC 2306 Barium as Ba	1	.5	0.15		20	100	300
DETSC 2306 Cadmium as Cd	< 0.	.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr	5	.6	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	0.	67	< 0.02		2	50	100
DETSC 2306 Mercury as Hg	< 0.	.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	2	.1	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	< 0).50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	0.	24	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se	2	.3	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	< :	1.3	< 0.01		4	50	200
DETSC 2055 Chloride as Cl	6	90	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	110	0000	1100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	230	0000	2300		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information					TBE -	To Be Evalua	ated
DETSC 2008 pH	7	.6			SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	32	2.0				Hazardous V	Vaste
* Temperature*	18	3.0					

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

0.110

0.099

0.976

0.92

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH03 0.50

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254898 2254911 Date Analysed 07/11/2023

Test Results On Waste] [W	AC Limit Va	lues
				J١	Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result	J I	Waste	Siditiiv	Waste
DETSC 2084# Total Organic Carbon		%	1.7	Ш	3	5	6
DETSC 2003# Loss On Ignition		%	2.1	Ш	n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04	Ш	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	Ш	1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	Ш	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6	Ш	100	n/a	n/a
DETSC 2008# pH		pH Units	8.1	Ш	n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (oH4)	mol/kg	3.6	Ш	n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (oH7)	mol/kg	< 1.0	J [n/a	TBE	TBE
Test Results On Leachate] [AC Limit Va	
	1		n	IJ.		ues for LS10	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg	<u> </u>	Inert	SNRHW	Hazardous
		0:1	LS10	┦╏	Waste		Waste
DETSC 2306 Arsenic as As		22	< 0.01	Ш	0.5	2	25
DETSC 2306 Barium as Ba		.6	< 0.1	Ш	20	100	300
DETSC 2306 Cadmium as Cd		.030	< 0.02	Ш	0.04	1	5
DETSC 2306 Chromium as Cr		34	< 0.1	Ш	0.5	10	70
DETSC 2306 Copper as Cu		67	< 0.02	Ш	2	50	100
DETSC 2306 Mercury as Hg		.010	< 0.002	Ш	0.01	0.2	2
DETSC 2306 Molybdenum as Mo		1.1	< 0.1	Ш	0.5	10	30
DETSC 2306 Nickel as Ni	< 0).50	< 0.1	Ш	0.4	10	40
DETSC 2306 Lead as Pb	0.	35	< 0.05	Ш	0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05	Ш	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0).25	< 0.03	Ш	0.1	0.5	7
DETSC 2306 Zinc as Zn]	3	0.03	Ш	4	50	200
DETSC 2055 Chloride as Cl	7	00	< 100	Ш	800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1	Ш	10	150	500
DETSC 2055 Sulphate as SO4	31	.00	< 100	Ш	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	33	000	330	Ш	4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	<1	Ш	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50	IJĮ	500	800	1000
Additional Information					TBE -	To Be Evalua	ated
DETSC 2008 pH	8	.8			SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	46	5.6				Hazardous V	Vaste
* Temperature*	18	3.0		•			
Mass of Sample Kg*	0.1	110					
Mass of dry Sample Kg*	0.0	099					
Stage 1	-						
	٦ .						

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

0.978

0.92

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP01 0.50

Sample Numbers 2254899 2254912 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	2.2
DETSC 2003# Loss On Ignition	%	1.3
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	3.6
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

W	AC Limit Va	lues
Inert	SNRHW	Hazardous
Waste	SINKHW	Waste
3	5	6
n/a	n/a	10
6	n/a	n/a
1	n/a	n/a
500	n/a	n/a
100	n/a	n/a
n/a	>6	n/a
n/a	TBE	TBE
n/a	TBE	TBE

WAC Limit Values

Test Results On Leachate

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	< 0.16	< 0.01
DETSC 2306 Barium as Ba	12	0.12
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.63	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	2.3	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	< 0.090	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	0.76	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	610	< 100
DETSC 2055* Fluoride as F	140	1.4
DETSC 2055 Sulphate as SO4	74000	740
DETSC 2009* Total Dissolved Solids	240000	2400
DETSC 2130 Phenol Index	< 100	<1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

Limit val	ues for LS10) Leachate
Inert	SNRHW	Hazardous
Waste	SINIVION	Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000
10	150	500
1000	20,000	50,000

TBE - To Be Evaluated
SNRHW - Stable Non-Reactive
Hazardous Waste

60,000

n/a

800

100,000

n/a

1000

4000

1 500

Additional Information

DETSC 2008 pH	7.6
DETSC 2009 Conductivity uS/cm	348.0
* Temperature*	18.0
Mass of Sample Kg*	0.100
Mass of dry Sample Kg*	0.094

Stage 1

V.2.06

Volume of Leachant L2* 0.938
Volume of Eluate VE1* 0.88

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP01 1.00

Sample Numbers 2254900 2254913 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.8
DETSC 2003# Loss On Ignition	%	2.0
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.1
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	4.2
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINITION	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.32	< 0.01
DETSC 2306 Barium as Ba	6.3	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.45	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	1.2	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	< 0.090	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	0.66	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	810	< 100
DETSC 2055* Fluoride as F	140	1.4
DETSC 2055 Sulphate as SO4	23000	230
DETSC 2009* Total Dissolved Solids	78000	780
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

WAC Limit Values						
Limit values for LS10 Leachate						
Inert	SNRHW	Hazardous				
Waste	SIVILITY	Waste				
0.5	2	25				
20	100	300				
0.04	1	5				
0.5	10	70				
2	50	100				
0.01	0.2	2				
0.5	10	30				
0.4	10	40				
0.5	10	50				
0.06	0.7	5				
0.1	0.5	7				
4	50	200				
800	15,000	25,000				
10	150	500				
1000	20,000	50,000				
4000	60,000	100,000				
1	n/a	n/a				
500	800	1000				

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Additional Information

DETSC 2008 pH	8.2
DETSC 2009 Conductivity uS/cm	111.0
* Temperature*	18.0
Mass of Sample Kg*	0.110
Mass of dry Sample Kg*	0.098

Stage 1

V.2.06

Volume of Leachant L2* 0.97 Volume of Eluate VE1* 0.91

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP02 0.50 **Test Results On Waste**

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254901 2254914 Date Analysed 07/11/2023

Test Results On Waste			\	WAC Limit Values			
rest Results Oil Waste				Inert	SNRHW	Hazardous	
Determinand and Method Reference		Units	Result	Waste		Waste	
DETSC 2084# Total Organic Carbon		%	1.2	3	5	6	
DETSC 2003# Loss On Ignition		%	1.8	n/a	n/a	10	
DETSC 3321# BTEX		mg/kg	< 0.04	6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	500	n/a	n/a	
DETSC 3301 PAHs		mg/kg	< 1.6	100	n/a	n/a	
DETSC 2008# pH		pH Units	8.2	n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (p	H4)	mol/kg	3.2	n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (p	H7)	mol/kg	< 1.0	n/a	TBE	TBE	
Test Results On Leachate			•	\	VAC Limit Va	alues	
Test Results Off Leachate				Limit v	alues for LS1	0 Leachate	
Determinand and Method Reference	Conc in E	luate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous	
Determinant and Method Reference	_	0:1	LS10	Waste	3141114	Waste	
DETSC 2306 Arsenic as As).16	< 0.01	0.5	2	25	
DETSC 2306 Barium as Ba		.6	< 0.1	20	100	300	
DETSC 2306 Cadmium as Cd	< 0.	.030	< 0.02	0.04	1	5	
DETSC 2306 Chromium as Cr	< 0).25	< 0.1	0.5	10	70	
DETSC 2306 Copper as Cu	0.	66	< 0.02	2	50	100	
DETSC 2306 Mercury as Hg	< 0.	.010	< 0.002	0.01	0.2	2	
DETSC 2306 Molybdenum as Mo	1.4		< 0.1	0.5	10	30	
DETSC 2306 Nickel as Ni	< 0).50	< 0.1	0.4	10	40	
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05	0.5	10	50	
DETSC 2306 Antimony as Sb	< 0).17	< 0.05	0.06	0.7	5	
DETSC 2306 Selenium as Se	0.	29	< 0.03	0.1	0.5	7	
DETSC 2306 Zinc as Zn	<:	1.3	< 0.01	4	50	200	
DETSC 2055 Chloride as Cl	83	30	< 100	800	15,000	25,000	
DETSC 2055* Fluoride as F	1!	50	1.5	10	150	500	
DETSC 2055 Sulphate as SO4	78	300	< 100	1000	20,000	50,000	
DETSC 2009* Total Dissolved Solids	320	000	320	4000	60,000	100,000	
DETSC 2130 Phenol Index	< 1	100	< 1	1	n/a	n/a	
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50	500	800	1000	
Additional Information			_	TBE	- To Be Evalu	ated	
DETSC 2008 pH	8	.3		SNRHW	- Stable Non-	Reactive	
DETSC 2009 Conductivity uS/cm	46	5.2			Hazardous \	Waste	
* Temperature*	18	3.0					
Mass of Sample Kg*	0.1	110					
Mass of dry Sample Kg*	0.0	099					
Stage 1							
	1						

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

0.984

0.93

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP03 0.50

Test Results On Waste

* Temperature*

Stage 1

V.2.06

Mass of Sample Kg*

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2254902 2254915 Date Analysed 07/11/2023

WAC Limit Values

Test hesuits off waste					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result		Waste	SINKHW	Waste
DETSC 2084# Total Organic Carbon		%	1.6		3	5	6
DETSC 2003# Loss On Ignition	oss On Ignition		3.1		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.7		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	2.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE
Test Results On Leachate						AC Limit Va	
	T		II	4		ues for LS10	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/k	g	Inert	SNRHW	Hazardous
DETEC 2200 Amaria as As		0:1	LS10	4	Waste	2	Waste
DETSC 2306 Arsenic as As		.43	< 0.01		0.5	2	25
DETSC 2306 Barium as Ba		24	0.24		20	100	300
DETSC 2306 Cadmium as Cd		098	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr		.69	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu		2	< 0.02		2	50	100
DETSC 2306 Mercury as Hg		018	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo		5.2	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni		81	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb		.8	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb		25	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se		4	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn		5	0.015		4	50	200
DETSC 2055 Chloride as Cl		30	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F		100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4		0000	2300		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids		0000	3400		4000	60,000	100,000
DETSC 2130 Phenol Index		100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	.000	< 50		500	800	1000
Additional Information			•			To Be Evalua	
DETSC 2008 pH		.3			SNRHW -	Stable Non-I	Reactive
DETSC 2009 Conductivity uS/cm	48	1.0			Hazardous Waste		Vaste

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

18.0

0.100

0.093

0.918

0.86

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP04 0.50

Sample Numbers 2254903 2254916 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.1
DETSC 2003# Loss On Ignition	%	2.7
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	2.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINKHW	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

WAC Limit Values

1	Test	R	PSI	ılts	On	I e	acl	hate
ı	ı Cal	17	CJU	IILS	VII	LC	au	Ialc

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.17	< 0.01
DETSC 2306 Barium as Ba	4.2	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.6	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	2.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	0.1	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	0.6	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	780	< 100
DETSC 2055* Fluoride as F	< 100	< 0.1
DETSC 2055 Sulphate as SO4	8300	< 100
DETSC 2009* Total Dissolved Solids	68000	680
DETSC 2130 Phenol Index	< 100	<1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

Limit values for LS10 Leachate				
Inert	SNRHW	Hazardous		
Waste	SINITION	Waste		
0.5	2	25		
20	100	300		
0.04	1	5		
0.5	10	70		
2	50	100		
0.01	0.2	2		
0.5	10	30		
0.4	10	40		
0.5	10	50		
0.06	0.7	5		
0.1	0.5	7		
4	50	200		
800	15,000	25,000		
10	150	500		
1000	20,000	50,000		
4000	60,000	100,000		
1	n/a	n/a		

TBE - To Be Evaluated
SNRHW - Stable Non-Reactive
Hazardous Waste

800

1000

500

Additional Information

DETSC 2008 pH	7.8
DETSC 2009 Conductivity uS/cm	97.6
* Temperature*	18.0
Mass of Sample Kg*	0.110
Mass of dry Sample Kg*	0.096

Stage 1

V.2.06

Volume of Leachant L2* 0.941
Volume of Eluate VE1* 0.89

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP06 0.50

Test Results On Waste

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254904 2254917 Date Analysed 07/11/2023

WAC Limit Values

Test Results Off Waste			Inert	SNRHW	Hazardous		
Determinand and Method Reference		Units	Result]	Waste	SINKHW	Waste
DETSC 2084# Total Organic Carbon		%	1.0	1	3	5	6
DETSC 2003# Loss On Ignition		%	3.9		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.9		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (p)H4)	mol/kg	< 1.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	oH7)	mol/kg	< 1.0		n/a	TBE	TBE
Test Results On Leachate				WAC Limit Values			
			II	4		ues for LS10	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg	3	Inert	SNRHW	Hazardous
		0:1	LS10	4	Waste		Waste
DETSC 2306 Arsenic as As		21	< 0.01		0.5	2	25
DETSC 2306 Barium as Ba		.7	< 0.1		20	100	300
DETSC 2306 Cadmium as Cd		.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr).25	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	_	63	< 0.02		2	50	100
DETSC 2306 Mercury as Hg		.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1	1.1	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	_	.50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se		.3	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1	1.3	< 0.01		4	50	200
DETSC 2055 Chloride as Cl	10	000	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	42	200	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	400	000	400		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information	_		•		TBE -	To Be Evalua	ated
DETSC 2008 pH 7.6					SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm 56.						Hazardous V	Vaste
* Temperature* 18.0]				
Mass of Sample Kg*	0.1	120					
Mass of dry Sample Kg*	0.1	100					
Stage 1	_						
	1						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.984

0.93

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP06 1.00

Sample Numbers 2254905 2254918 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.1
DETSC 2003# Loss On Ignition	%	3.4
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values					
Inert	SNRHW	Hazardous			
Waste	SINULIAN	Waste			
3	5	6			
n/a	n/a	10			
6	n/a	n/a			
1	n/a	n/a			
500	n/a	n/a			
100	n/a	n/a			
n/a	>6	n/a			
n/a	TBE	TBE			
n/a	TBE	TBE			

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.27	< 0.01
DETSC 2306 Barium as Ba	3.4	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.78	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	0.58	< 0.1
DETSC 2306 Lead as Pb	0.13	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	< 0.25	< 0.03
DETSC 2306 Zinc as Zn	1.4	0.014
DETSC 2055 Chloride as Cl	1000	< 100
DETSC 2055* Fluoride as F	< 100	< 0.1
DETSC 2055 Sulphate as SO4	2900	< 100
DETSC 2009* Total Dissolved Solids	40000	400
DETSC 2130 Phenol Index	< 100	<1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

WAC Limit Values					
Limit values for LS10 Leachate					
Inert	SNRHW	Hazardous			
Waste	SIVICITY	Waste			
0.5	2	25			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			
1	n/a	n/a			
500	800	1000			

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional Information

DETSC 2008 pH	7.5
DETSC 2009 Conductivity uS/cm	57.7
* Temperature*	18.0
Mass of Sample Kg*	0.120
Mass of dry Sample Kg*	0.101

Stage 1

V.2.06

Volume of Leachant L2* 0.992
Volume of Eluate VE1* 0.94

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-25557 *Client Ref* 23-0881E

Contract Title NDFA SOCIAL HOUSING

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2254893	BH03A 0.50	SOIL	NAD	none	Lee Kerridge
2254894	BH04 0.50	SOIL	NAD	none	Lee Kerridge
2254895	TP05 0.50	SOIL	NAD	none	Lee Kerridge
2254896	TP05 1.00	SOIL	NAD	none	Lee Kerridge
2254897	BH01 0.50	SOIL	NAD	none	Lee Kerridge
2254898	BH03 0.50	SOIL	NAD	none	Lee Kerridge
2254899	TP01 0.50	SOIL	NAD	none	Lee Kerridge
2254900	TP01 1.00	SOIL	NAD	none	Lee Kerridge
2254901	TP02 0.50	SOIL	NAD	none	Lee Kerridge
2254902	TP03 0.50	SOIL	NAD	none	Lee Kerridge
2254903	TP04 0.50	SOIL	NAD	none	Lee Kerridge
2254904	TP06 0.50	SOIL	NAD	none	Lee Kerridge
2254905	TP06 1.00	SOIL	NAD	none	Lee Kerridge

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Our Ref 23-25557 Client Ref 23-0881E

Contract NDFA SOCIAL HOUSING

Containers Received & Deviating Samples

					Inappropriate
		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2254893	BH03A 0.50 SOIL	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254894	BH04 0.50 SOIL	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254895	TP05 0.50 SOIL	10/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254896	TP05 1.00 SOIL	10/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254897	BH01 0.50 SOIL	10/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254898	BH03 0.50 SOIL	10/10/23	GJ 250ml x4, GJ 60ml x4, PT 1L x4	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254899	TP01 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254900	TP01 1.00 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254901	TP02 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254902	TP03 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	

Our Ref 23-25557 Client Ref 23-0881E

Contract NDFA SOCIAL HOUSING

		inappropriate
Date		container for

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2254903	TP04 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254904	TP06 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254905	TP06 1.00 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254906	BH03A 0.50 LEACHATE	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
2254907	BH04 0.50 LEACHATE	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
2254908	TP05 0.50 LEACHATE	10/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254909	TP05 1.00 LEACHATE	10/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254910	BH01 0.50 LEACHATE	10/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254911	BH03 0.50 LEACHATE	10/10/23	GJ 250ml x4, GJ 60ml x4, PT 1L x4		
2254912	TP01 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254913	TP01 1.00 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254914	TP02 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254915	TP03 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254916	TP04 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254917	TP06 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254918	TP06 1.00 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C44	EH_CU_1D_AL
Aliphatic C10-C44	EH_CU_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C44	EH_CU_1D_AR
Aromatic C10-C44	EH_CU_1D_AR
Ali/Aro C10-C44	EH_CU_1D_Total
TPH (C10-C40)	EH_1D_Total
C24-C40 Lube Oil Range Organics (LC	EH_1D_Total

End of Report

Certificate of Analysis

Issued:

18-Dec-23

Certificate Number 23-28023

Client Causeway Geotech

Unit 1 Fingal House

Stephenstown Industrial Estate

Balbriggan Co. Dublin K32 VR66

Our Reference 23-28023

Client Reference 23-0881E

Order No (not supplied)

Contract Title NDFA - Oldtown Mill

Description 3 Soil samples, 3 Leachate prepared by DETS samples.

Date Received 29-Nov-23

Date Started 29-Nov-23

Date Completed 18-Dec-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Lab No	2269017	2269018	2269019
.Sample ID	BH08	BH11	BH06
Depth	0.50	1.00	0.50
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	19/10/2023	19/10/2023	17/10/2023
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units	-	-	,5
Preparation						
Moisture Content	DETSC 1004	0.1	%	25	29	20
Metals						
Antimony	DETSC 2301*	1	mg/kg	1.7	2.0	1.9
Arsenic	DETSC 2301#	0.2	mg/kg	14	13	13
Barium	DETSC 2301#	1.5	mg/kg	47	47	43
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	3.6	3.4	2.7
Chromium	DETSC 2301#	0.15	mg/kg	12	16	17
Chromium III	DETSC 2301*	0.15	mg/kg	12	16	17
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	26	30	28
Lead	DETSC 2301#	0.3	mg/kg	22	24	21
Mercury	DETSC 2325#	0.05	mg/kg	0.08	0.08	0.07
Molybdenum	DETSC 2301#	0.4	mg/kg	5.1	4.7	3.9
Nickel	DETSC 2301#	1	mg/kg	40	42	46
Selenium	DETSC 2301#	0.5	mg/kg	1.3	1.5	1.1
Zinc	DETSC 2301#	1	mg/kg	100	110	110
Inorganics pH	DETSC 2008#		рН	7.9	7.5	7.8
Cyanide, Total	DETSC 2008#	0.1	mg/kg	0.2	0.2	0.1
Total Organic Carbon		0.1	111g/ kg %	1.6	2.1	0.6
Sulphide	DETSC 2084#					
-	DETSC 2024*	10 0.75	mg/kg	< 0.75	28 < 0.75	< 0.75
Sulphur (free)	DETSC 3049#		mg/kg %			
Sulphate as SO4, Total Petroleum Hydrocarbons	DETSC 2321#	0.01	%	0.07	0.07	0.05
-	DETCC 2224*	0.01		4 0 01	. 0.01	4 O O1
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60	< 0.60

Contract Title NDFA - Oldtown Willi			Lab No	2269017	2269018	2269019
		.Sa	ample ID	BH08	BH11	BH06
			Depth	0.50	1.00	0.50
			Other ID	1	2	1
		Sam	ple Type	ES	ES	ES
		-	_	19/10/2023	19/10/2023	17/10/2023
		-	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40		< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg		< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
Benzene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DFTSC 3311#	10	mg/kg	< 10	< 10	< 10
PAHs	DE13C 3311#	10	1116/116	110	(10	110
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Coronene	DETSC 3301*	0.1	mg/kg		< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg		< 1.6	< 1.6
PCBs		l. L			l.	
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01

Lab No	2269017	2269018	2269019
.Sample ID	BH08	BH11	BH06
Depth	0.50	1.00	0.50
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	19/10/2023	19/10/2023	17/10/2023
Sampling Time	n/s	n/s	n/s

1631	Method	LOD	Ullits			
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.9	3.7	0.5

Summary of Chemical Analysis Leachate Samples

Lab No	2269020	2269021	2269022
.Sample ID	BH08	BH11	BH06
Depth	0.50	1.00	0.50
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	19/10/2023	19/10/2023	17/10/2023
Sampling Time	n/s	n/s	n/s
LOD Units			

Test	Method	LOD	Units			
Preparation						
BS EN 12457 10:1	DETSC 1009*			Υ	Υ	Υ
Inorganics						
Un-Ionised Ammonia	*	0.02	mg/l	< 0.02	< 0.02	< 0.02
Ammoniacal Nitrogen as NH4	DETSC 2207	0.0193	mg/l	0.08	0.03	0.02

Our Ref 23-28023 Client Ref 23-0881E

Contract Title NDFA - Oldtown Mill

Sample Id BH08 1 0.50

Sample Numbers 2269017 2269020 Date Analysed 15/12/2023

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.6
DETSC 2003# Loss On Ignition	%	5.2
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	7.9
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values			
Inert	SNRHW	Hazardous	
Waste	SINULIAN	Waste	
3	5	6	
n/a	n/a	10	
6	n/a	n/a	
1	n/a	n/a	
500	n/a	n/a	
100	n/a	n/a	
n/a	>6	n/a	
n/a	TBE	TBE	
n/a	TBE	TBE	

Test Resu	Its Or	า Leacl	hate
-----------	--------	---------	------

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Wethod Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.87	< 0.01
DETSC 2306 Barium as Ba	20	0.2
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	0.3	< 0.1
DETSC 2306 Copper as Cu	0.67	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	0.23	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	1.5	< 0.03
DETSC 2306 Zinc as Zn	2.7	0.027
DETSC 2055 Chloride as Cl	720	< 100
DETSC 2055* Fluoride as F	110	1.1
DETSC 2055 Sulphate as SO4	1600	< 100
DETSC 2009* Total Dissolved Solids	24000	240
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

WAC Limit Values					
Limit values for LS10 Leachate					
Inert	SNIPHW Hazardo				
Waste	SNRHW Waste				

Inert	SNRHW	Hazardous		
Waste	SINKHW	Waste		
0.5	2	25		
20	100	300		
0.04	1	5		
0.5	10	70		
2	50	100		
0.01	0.2	2		
0.5	10	30		
0.4	10	40		
0.5	10	50		
0.06	0.7	5		
0.1	0.5	7		
4	50	200		
800	15,000	25,000		
10	150	500		
1000	20,000	50,000		
4000	60,000	100,000		
1	n/a	n/a		
500	800	1000		
TRF -	TRE - To Be Evaluated			

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

-					•			
$\boldsymbol{\Lambda}$	10	 nr	ıoı	In	tor	m	ation	
М,	ıu	 vı	ıaı		ıvı	1110	3 LIOI I	

DETSC 2008 pH	7.4
DETSC 2009 Conductivity uS/cm	34.7
* Temperature*	16.0
Mass of Sample Kg*	0.130

Mass of dry Sample Kg* Stage 1

V.2.06

Volume of Leachant L2* 0.947 Volume of Eluate VE1* 0.895

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.098

Our Ref 23-28023 *Client Ref* 23-0881E

Contract Title NDFA - Oldtown Mill

Sample Id BH11 2 1.00

Sample Numbers 2269018 2269021 Date Analysed 15/12/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	2.1
DETSC 2003# Loss On Ignition	%	6.8
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	7.5
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values			
Inert	SNRHW	Hazardous	
Waste	SINULIAN	Waste	
3	5	6	
n/a	n/a	10	
6	n/a	n/a	
1	n/a	n/a	
500	n/a	n/a	
100	n/a	n/a	
n/a	>6	n/a	
n/a	TBE	TBE	
n/a	TBE	TBE	

WAC Limit Values

Test Resu	lts On	Leac	hate
-----------	--------	------	------

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.95	< 0.01
DETSC 2306 Barium as Ba	5.3	< 0.1
DETSC 2306 Cadmium as Cd	0.034	< 0.02
DETSC 2306 Chromium as Cr	0.28	< 0.1
DETSC 2306 Copper as Cu	0.62	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	0.18	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	1.6	< 0.03
DETSC 2306 Zinc as Zn	1.4	0.014
DETSC 2055 Chloride as Cl	370	< 100
DETSC 2055* Fluoride as F	< 100	< 0.1
DETSC 2055 Sulphate as SO4	890	< 100
DETSC 2009* Total Dissolved Solids	13000	130
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	2400	< 50

Limit val	Limit values for LS10 Leachate								
Inert	SNRHW	Hazardous							
Waste	SIVINITV	Waste							
0.5	2	25							
20	100	300							
0.04	1	5							
0.5	10	70							
2	50	100							
0.01	0.2	2							
0.5	10	30							
0.4	10	40							
0.5	10	50							
0.06	0.7	5							
0.1	0.5	7							
4	50	200							
800	15,000	25,000							
10	150	500							
1000	20,000	50,000							
4000	60,000	100,000							

TBE - To Be Evaluated
SNRHW - Stable Non-Reactive
Hazardous Waste

n/a

800

1 500 n/a

1000

			tion

Mass of dry Sample Kg*

DETSC 2008 pH	7.2
DETSC 2009 Conductivity uS/cm	17.9
* Temperature*	16.0
Mass of Sample Kg*	0.140

Stage 1

V.2.06

Volume of Leachant L2* 0.955 Volume of Eluate VE1* 0.903

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.100

Our Ref 23-28023 Client Ref 23-0881E

Contract Title NDFA - Oldtown Mill

Sample Id BH06 1 0.50

Test Results On Waste

* Temperature*

Stage 1

V.2.06

Mass of Sample Kg*

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2269019 2269022 Date Analysed 15/12/2023

Inert

WAC Limit Values

Hazardous

			inert	SNRHW	Hazardous		
Determinand and Method Reference	Units	Result	71	Waste	SINKHW	Waste	
DETSC 2084# Total Organic Carbon		%	0.6	1 🗆	3	5	6
DETSC 2003# Loss On Ignition		%	3.4		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.8		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (p	H4)	mol/kg	< 1.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	H7)	mol/kg	< 1.0	J L	n/a	TBE	TBE
Test Results On Leachate				WAC Limit Values			
rest nesares on Ecocitate				J L		ues for LS10	
Determinand and Method Reference			Amount Leached* mg/kg	<u> </u>	Inert	SNRHW	Hazardous
		0:1	LS10	J L	Waste		Waste
DETSC 2306 Arsenic as As		1	0.01		0.5	2	25
DETSC 2306 Barium as Ba	3.8		< 0.1		20	100	300
DETSC 2306 Cadmium as Cd		.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr	0.3		< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	_	.46	< 0.02		2	50	100
DETSC 2306 Mercury as Hg		.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1	1.1	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	< C).50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	< C	0.17	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se	1	9	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	< :	1.3	< 0.01		4	50	200
DETSC 2055 Chloride as Cl	4.	50	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 2	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	20	000	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	27000		270		4000	60,000	100,000
DETSC 2130 Phenol Index	< 100		< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon < 2000		.000	< 50		500	800	1000
Additional Information				_	TBE -	To Be Evalua	ited
DETSC 2008 pH	6	5.4			SNRHW -	Stable Non-F	Reactive
DETSC 2009 Conductivity uS/cm	38	8.8				Hazardous V	Vaste
* *			ĺ				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

17.0

0.120

0.096

0.933

0.88

Summary of Asbestos Analysis Soil Samples

Our Ref 23-28023 *Client Ref* 23-0881E

Contract Title NDFA - Oldtown Mill

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2269017	BH08 1 0.50	SOIL	NAD	none	Barry Kelly
2269018	BH11 2 1.00	SOIL	NAD	none	Barry Kelly
2269019	BH06 1 0.50	SOIL	NAD	none	Barry Kelly

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Our Ref 23-28023 Client Ref 23-0881E

Contract NDFA - Oldtown Mill

Containers Received & Deviating Samples

Date containers Received Holding time exceeded for tests

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2269017	внов 0.50 soil	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2	BTEX / C5-C10 (14 days), Sulphur (free) (7 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14	
2269018	BH11 1.00 SOIL	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2	BTEX / C5-C10 (14 days), Sulphur (free) (7 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14	
2269019	BH06 0.50 SOIL	17/10/23	GJ 250ml, GJ 60ml, PT 1L x2	BTEX / C5-C10 (14 days), Sulphur (free) (7 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14	
2269020	BH08 0.50 LEACHATE	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2		
2269021	BH11 1.00 LEACHATE	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2		
2269022	BH06 0.50 LEACHATE	17/10/23	GJ 250ml, GJ 60ml, PT 1L x2		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total
TPH (C10-C40)	EH_1D_Total
C24-C40 Lube Oil Range Organics (LO	EH_1D_Total

End of Report

APPENDIX J ENVIRONMENTAL LABORATORY TEST RESULTS

Certificate of Analysis

Certificate Number 23-25557

Issued:

07-Nov-23

Client Causeway Geotech

Unit 1 Fingal House

Stephenstown Industrial Estate

Balbriggan Co. Dublin K32 VR66

Our Reference 23-25557

Client Reference 23-0881E

Order No (not supplied)

Contract Title NDFA SOCIAL HOUSING

Description 13 Soil samples, 13 Leachate samples.

Date Received 30-Oct-23

Date Started 30-Oct-23

Date Completed 07-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254893	2254894	2254895	2254896	2254897	2254898	2254899
.Sample ID	BH03A	BH04	TP05	TP05	BH01	BH03	TP01
Depth	0.50	0.50	0.50	1.00	0.50	0.50	0.50
Other ID							
Sample Type	ES						
Sampling Date	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	11/10/2023
Sampling Time	n/s						

Test	Method	LOD	Units							
Preparation										
Moisture Content	DETSC 1004	0.1	%	8.7	21	12	8.7	10	10	5.7
Metals										
Antimony	DETSC 2301*	1	mg/kg	1.2	3.3	2.0	2.4	1.3	1.7	< 1.0
Arsenic	DETSC 2301#	0.2	mg/kg	5.8	22	11	11	7.0	8.8	7.5
Barium	DETSC 2301#	1.5	mg/kg	17	61	51	26	25	23	24
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	0.3
Cadmium	DETSC 2301#	0.1	mg/kg	2.8	9.6	3.6	3.6	1.8	2.7	1.7
Chromium	DETSC 2301#	0.15	mg/kg	3.9	19	7.7	7.9	6.7	5.1	5.3
Chromium III	DETSC 2301*	0.15	mg/kg	3.9	19	7.7	7.9	6.7	5.1	5.3
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	12	49	25	27	15	21	11
Lead	DETSC 2301#	0.3	mg/kg	9.8	23	14	15	6.2	12	4.7
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	4.3	16	5.3	6.4	4.6	4.4	3.6
Nickel	DETSC 2301#	1	mg/kg	23	91	41	45	25	32	19
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	7.0	0.8	0.8	1.9	0.7	1.6
Zinc	DETSC 2301#	1	mg/kg	68	150	110	120	62	89	48
Inorganics										
рН	DETSC 2008#		рН	8.2	7.1	8.0	8.1	7.8	8.1	8.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%	2.4	1.3	1.3	1.2	2.3	1.7	2.2
Sulphide	DETSC 2024*	10	mg/kg	24	< 10	51	91	83	91	130
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	1.1	< 0.75	< 0.75	< 0.75	< 0.75	0.92
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.04	0.32	0.04	0.05	0.22	0.04	0.21
Petroleum Hydrocarbons										
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL		1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL		1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL		1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL		3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR		0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR		0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4

Our Ref 23-25557
Client Ref 23-0881E

Contract Title NDFA SOCIAL	HOUSING									
CONTRACT THE NOTA SOCIAL	. HOUSING		Lab No	2254902	2254804	225,4805	2254806	2254907	225,4000	2254899
		٠.		2254893 BH03A	2254894 BH04	2254895 TP05	2254896 TP05	2254897 BH01	2254898 BH03	7254899 TP01
		.Sa	mple ID							
			Depth	0.50	0.50	0.50	1.00	0.50	0.50	0.50
			Other ID							
		_	ole Type	ES	ES		ES	ES		ES
		_	_			10/10/2023				
T	8.0 - AlI	=	ng Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	. 1 . 1	. 1 1	. 1 1	. 1 1	. 1 1	. 1 1	. 1 . 1
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C10-C44: EH_CU_1D_AR		10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Ali/Aro C10-C44: EH_CU_1D_Total		10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
		4.0	/1	4.0	4.0	10	4.0	4.0	10	10
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DETSC 3311#	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10
PAHs			,							
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Coronene	DETSC 3301*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
PCBs										
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		
PCB 180	DETSC 3401#	0.01	mg/kg		< 0.01		< 0.01	< 0.01		
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01		
Phenols			3i · 6							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
		0.0	0′′ ان	0.0	0.0	. 0.0	. 0.0	. 0.0	0.5	0.0

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254900	2254901	2254902	2254903	2254904	2254905
.Sample ID	TP01	TP02	TP03	TP04	TP06	TP06
Depth	1.00	0.50	0.50	0.50	0.50	1.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Preparation									
Moisture Content	DETSC 1004	0.1	%	11	9.6	7.4	13	16	16
Metals									
Antimony	DETSC 2301*	1	mg/kg	1.8	1.5	1.9	2.0	2.5	1.8
Arsenic	DETSC 2301#	0.2	mg/kg	9.1	9.7	9.4	9.8	14	10
Barium	DETSC 2301#	1.5	mg/kg	17	28	19	29	49	37
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2	0.3	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	3.6	2.7	2.4	3.6	3.8	3.1
Chromium	DETSC 2301#	0.15	mg/kg	7.1	7.8	6.2	8.8	14	10
Chromium III	DETSC 2301*	0.15	mg/kg	7.1	7.8	6.2	8.8	14	10
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	20	22	21	24	33	24
Lead	DETSC 2301#	0.3	mg/kg	6.0	9.9	11	9.1	21	15
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	6.4	4.2	6.5	5.9	5.5	4.7
Nickel	DETSC 2301#	1	mg/kg	37	37	40	38	51	40
Selenium	DETSC 2301#	0.5	mg/kg	0.9	0.8	3.1	1.1	1.4	1.0
Zinc	DETSC 2301#	1	mg/kg	81	99	76	100	130	100
Inorganics									
рН	DETSC 2008#		рН	8.1	8.2	7.7	8.0	7.9	8.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.1
Total Organic Carbon	DETSC 2084#	0.5	%	1.8	1.2	1.6	1.1	1.0	1.1
Sulphide	DETSC 2024*	10	mg/kg	87	43	110	55	43	32
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.07	0.04	0.71	0.06	0.06	0.06
Petroleum Hydrocarbons									
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR		0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL	HOUSING								
			Lab No	2254900	2254901	2254902	2254903	2254904	2254905
		.Sa	ample ID	TP01	TP02	TP03	TP04	TP06	TP06
			Depth	1.00	0.50	0.50	0.50	0.50	1.00
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			<u> </u>						
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DETSC 3311#	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
PAHs									
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Coronene	DETSC 3301*	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg		< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
PCBs									
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 138	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PCB 180	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
PCB 7 Total	DETSC 3401#	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Phenols	•		<u> </u>						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
			<u> </u>						

Summary of Chemical Analysis Leachate Samples

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254906	2254907	2254908	2254909	2254910	2254911	2254912	2254913	2254914	2254915	2254916
.Sample ID	вноза	BH04	TP05	TP05	BH01	BH03	TP01	TP01	TP02	TP03	TP04
Depth	0.50	0.50	0.50	1.00	0.50	0.50	0.50	1.00	0.50	0.50	0.50
Other ID											
Sample Type	ES										
Sampling Date	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Sampling Time	n/s										

Test	Method	LOD	Units											
Preparation														
BS EN 12457 10:1	DETSC 1009*			Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Inorganics														
Un-Ionised Ammonia	*	0.02	mg/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ammoniacal Nitrogen as NH4	DETSC 2207	0.0193	mg/l	< 0.02	< 0.02	< 0.02	0.03	0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02

Key: *-not accredited. n/s-not supplied.

Summary of Chemical Analysis Leachate Samples

Our Ref 23-25557 Client Ref 23-0881E Contract Title NDFA SOCIAL HOUSING

Lab No	2254917	2254918
.Sample ID	TP06	TP06
Depth	0.50	1.00
Other ID		
Sample Type	ES	ES
Sampling Date	11/10/2023	11/10/2023
Sampling Time	n/s	n/s

Test	Method	LOD	Units		
Preparation					
BS EN 12457 10:1	DETSC 1009*			Υ	Υ
Inorganics					
Un-Ionised Ammonia	*	0.02	mg/l	< 0.02	< 0.02
Ammoniacal Nitrogen as NH4	DETSC 2207	0.0193	mg/l	0.02	< 0.02

Key: *-not accredited. n/s -not supplied.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH03A 0.50

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254893 2254906 Date Analysed 07/11/2023

WAC Limit Values

Test Results On Waste					WAC Limit values		
Determinand and Method Reference		Units	Result	4	Inert Waste	SNRHW	Hazardous Waste
DETSC 2084# Total Organic Carbon		%	2.4	1	3	5	6
DETSC 2003# Loss On Ignition	•		1.6		n/a	n/a	10
DETSC 3321# BTEX		% mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.04		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH 1D Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	8.2		n/a	>6	n/a
DETSC 2003, pri DETSC 2073* Acid Neutralisation Capacity (p	h4)	mol/kg	3.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	•	mol/kg	< 1.0		n/a	TBE	TBE
		, , ,	<u>!</u>	7		AC Limit Va	
Test Results On Leachate						ues for LS1	
	Conc in E	luate ug/l	Amount Leached* mg/kg	7	Inert		Hazardous
Determinand and Method Reference):1	LS10	1	Waste	SNRHW	Waste
DETSC 2306 Arsenic as As	0.	22	< 0.01	1	0.5	2	25
DETSC 2306 Barium as Ba	2	.1	< 0.1		20	100	300
DETSC 2306 Cadmium as Cd	< 0.	.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr	0.	52	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	0.	71	< 0.02		2	50	100
DETSC 2306 Mercury as Hg	< 0.	.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	1	.2	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	0.	77	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	0.	19	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se	0.	44	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	2	.8	0.028		4	50	200
DETSC 2055 Chloride as Cl	14	100	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	60	000	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	42	000	420		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information			_		TBE -	To Be Evalua	ated
DETSC 2008 pH	8	.1			SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	60	0.0				Hazardous V	Vaste
* Temperature*	18	3.0]				
Mass of Sample Kg*	0.1	110					
Mass of dry Sample Kg*	0.1	100					
Stage 1	4						
	7						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.995

0.94

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH04 0.50

Sample Numbers 2254894 2254907 Date Analysed 07/11/2023

Test Results On Waste							
Determinand and Method Reference	Units	Result					
DETSC 2084# Total Organic Carbon	%	1.3					
DETSC 2003# Loss On Ignition	%	4.8					
DETSC 3321# BTEX	mg/kg	< 0.04					
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01					
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10					
DETSC 3301 PAHs	mg/kg	< 1.6					
DETSC 2008# pH	pH Units	7.1					
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0					
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0					

W	WAC Limit Values								
Inert	SNRHW	Hazardous							
Waste	SINULIAN	Waste							
3	5	6							
n/a	n/a	10							
6	n/a	n/a							
1	n/a	n/a							
500	n/a	n/a							
100	n/a	n/a							
n/a	>6	n/a							
n/a	TBE	TBE							
n/a	TBE	TBE							

Test	Resu	ltς	On	Leac	hate
1636	11C3U	11.3	OII	LCal	IIalc

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg		
Determinand and Method Reference	10:1	LS10		
DETSC 2306 Arsenic as As	< 0.16	< 0.01		
DETSC 2306 Barium as Ba	3.3	< 0.1		
DETSC 2306 Cadmium as Cd	0.053	< 0.02		
DETSC 2306 Chromium as Cr	< 0.25	< 0.1		
DETSC 2306 Copper as Cu	0.5	< 0.02		
DETSC 2306 Mercury as Hg	< 0.010	< 0.002		
DETSC 2306 Molybdenum as Mo	1.7	< 0.1		
DETSC 2306 Nickel as Ni	0.77	< 0.1		
DETSC 2306 Lead as Pb	< 0.090	< 0.05		
DETSC 2306 Antimony as Sb	< 0.17	< 0.05		
DETSC 2306 Selenium as Se	1.9	< 0.03		
DETSC 2306 Zinc as Zn	< 1.3	< 0.01		
DETSC 2055 Chloride as Cl	660	< 100		
DETSC 2055* Fluoride as F	170	1.7		
DETSC 2055 Sulphate as SO4	69000	690		
DETSC 2009* Total Dissolved Solids	160000	1600		
DETSC 2130 Phenol Index	< 100	<1		
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50		

WAC Limit Values							
Limit val	ues for LS10) Leachate					
Inert	SNRHW	Hazardous					
Waste	SINULIAN	Waste					
0.5	2	25					
20	100	300					
0.04	1	5					
0.5	10	70					
2	50	100					
0.01	0.2	2					
0.5	10	30					
0.4	10	40					
0.5	10	50					
0.06	0.7	5					
0.1	0.5	7					
4	50	200					
800	15,000	25,000					
10	150	500					
1000	20,000	50,000					
4000	60,000	100,000					
1	n/a	n/a					
500	800	1000					

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Additional Information
DETSC 2008 pH

DETSC 2008 pH 7.4

DETSC 2009 Conductivity uS/cm 232.0

* Temperature* 18.0

Mass of Sample Kg* 0.130

Mass of dry Sample Kg* Stage 1

V.2.06

Volume of Leachant L2* 1
Volume of Eluate VE1* 0.95

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.103

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP05 0.50

Additional Information

DETSC 2009 Conductivity uS/cm

DETSC 2008 pH

* Temperature*

Stage 1

V.2.06

Mass of Sample Kg*

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2254895 2254908 Date Analysed 07/11/2023

Test Results On Waste				11	W	AC Limit Va	lues
Test Results Off Waste					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result		Waste		Waste
DETSC 2084# Total Organic Carbon		%	1.3		3	5	6
DETSC 2003# Loss On Ignition		%	2.4	Ш	n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04	Ш	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	Ш	1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	Ш	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6	Ш	100	n/a	n/a
DETSC 2008# pH		pH Units	8.0	Ш	n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (p	H4)	mol/kg	3.0	Ш	n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	H7)	mol/kg	< 1.0] [n/a	TBE	TBE
Test Results On Leachate				11	WAC Limit Values		lues
Test Nesuits On Leachate					Limit values for LS10 Leach		
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg		Inert	SNRHW	Hazardous
		0:1	LS10		Waste		Waste
DETSC 2306 Arsenic as As		19	< 0.01	Ш	0.5	2	25
DETSC 2306 Barium as Ba		.1	< 0.1	Ш	20	100	300
DETSC 2306 Cadmium as Cd	< 0	.030	< 0.02	Ш	0.04	1	5
DETSC 2306 Chromium as Cr	< 0).25	< 0.1	Ш	0.5	10	70
DETSC 2306 Copper as Cu		77	< 0.02	Ш	2	50	100
DETSC 2306 Mercury as Hg	< 0	.010	< 0.002	Ш	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1	1.1	< 0.1	Ш	0.5	10	30
DETSC 2306 Nickel as Ni	0.	57	< 0.1	Ш	0.4	10	40
DETSC 2306 Lead as Pb	< 0	.090	< 0.05	Ш	0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05	Ш	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0).25	< 0.03	Ш	0.1	0.5	7
DETSC 2306 Zinc as Zn	7	.5	0.075	Ш	4	50	200
DETSC 2055 Chloride as Cl	9	10	< 100	Ш	800	15,000	25,000
DETSC 2055* Fluoride as F	< 2	100	< 0.1	Ш	10	150	500
DETSC 2055 Sulphate as SO4	27	700	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	36	000	360		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

8.5

51.2

18.0

0.110

0.097

0.953

0.9

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP05 1.00

Sample Numbers 2254896 2254909 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.2
DETSC 2003# Loss On Ignition	%	2.6
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.1
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	2.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

W	AC Limit Va	lues
Inert	SNRHW	Hazardous
Waste	SINITION	Waste
3	5	6
n/a	n/a	10
6	n/a	n/a
1	n/a	n/a
500	n/a	n/a
100	n/a	n/a
n/a	>6	n/a
n/a	TBE	TBE
n/a	TBE	TBE

WAC Limit Values

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	< 0.16	< 0.01
DETSC 2306 Barium as Ba	2.3	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.62	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	< 0.090	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	< 0.25	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	1400	< 100
DETSC 2055* Fluoride as F	110	1.1
DETSC 2055 Sulphate as SO4	3500	< 100
DETSC 2009* Total Dissolved Solids	38000	380
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

Į vv.	AC LIIIIIL Va	iues
Limit val	ues for LS10) Leachate
Inert	SNRHW	Hazardous
Waste	SINULIAN	Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000
10	150	500
1000	20,000	50,000
4000	60,000	100,000
1	n/a	n/a
500	800	1000

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Additional Information

DETSC 2008 pH 8.6

DETSC 2009 Conductivity uS/cm 54.8

* Temperature* 18.0

Mass of Sample Kg*

Mass of dry Sample Kg*

0.110

Stage 1

V.2.06

Volume of Leachant L2* 0.994
Volume of Eluate VE1* 0.94

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH01 0.50

Mass of Sample Kg*

Stage 1

V.2.06

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2254897 2254910 Date Analysed 07/11/2023

Test Results On Waste					W	AC Limit Va	lues
rest Results On Waste					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result		Waste	SINULIAN	Waste
DETSC 2084# Total Organic Carbon	%		2.3		3	5	6
DETSC 2003# Loss On Ignition	%		2.0		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.8		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (oH4)	mol/kg	4.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (oH7)	mol/kg	< 1.0		n/a	TBE	TBE
Took Bosselto On Loook ata			•	Ť	WAC Limit Values		
Test Results On Leachate					Limit val	ues for LS10	O Leachate
Determined and Mathed Defenses	Conc in E	luate ug/l	Amount Leached* mg/l	g	Inert	CNIDLINA	Hazardous
Determinand and Method Reference	10	0:1	LS10		Waste	SNRHW	Waste
DETSC 2306 Arsenic as As	0.	22	< 0.01		0.5	2	25
DETSC 2306 Barium as Ba	1	.5	0.15		20	100	300
DETSC 2306 Cadmium as Cd	< 0.	.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr	5	.6	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	0.	67	< 0.02		2	50	100
DETSC 2306 Mercury as Hg	< 0.	.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	2	.1	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	< 0).50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	0.	24	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se	2	.3	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	< :	1.3	< 0.01		4	50	200
DETSC 2055 Chloride as Cl	6	90	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	110	0000	1100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	230	0000	2300		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information					TBE -	To Be Evalua	ated
DETSC 2008 pH	7	.6			SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	32	2.0				Hazardous V	Vaste
* Temperature*	18	3.0					

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

0.110

0.099

0.976

0.92

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id BH03 0.50

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254898 2254911 Date Analysed 07/11/2023

Test Results On Waste] [W	AC Limit Va	lues
				J١	Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result	J I	Waste	Siditiiv	Waste
DETSC 2084# Total Organic Carbon		%	1.7	Ш	3	5	6
DETSC 2003# Loss On Ignition		%	2.1	Ш	n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04	Ш	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	Ш	1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	Ш	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6	Ш	100	n/a	n/a
DETSC 2008# pH		pH Units	8.1	Ш	n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (oH4)	mol/kg	3.6	Ш	n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (oH7)	mol/kg	< 1.0	J [n/a	TBE	TBE
Test Results On Leachate] [AC Limit Va	
	1		n	IJ.		ues for LS10	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg	<u> </u>	Inert	SNRHW	Hazardous
		0:1	LS10	┦╏	Waste		Waste
DETSC 2306 Arsenic as As		22	< 0.01	Ш	0.5	2	25
DETSC 2306 Barium as Ba		.6	< 0.1	Ш	20	100	300
DETSC 2306 Cadmium as Cd		.030	< 0.02	Ш	0.04	1	5
DETSC 2306 Chromium as Cr		34	< 0.1	Ш	0.5	10	70
DETSC 2306 Copper as Cu		67	< 0.02	Ш	2	50	100
DETSC 2306 Mercury as Hg		.010	< 0.002	Ш	0.01	0.2	2
DETSC 2306 Molybdenum as Mo		1.1	< 0.1	Ш	0.5	10	30
DETSC 2306 Nickel as Ni	< 0).50	< 0.1	Ш	0.4	10	40
DETSC 2306 Lead as Pb	0.	35	< 0.05	Ш	0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05	Ш	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0).25	< 0.03	Ш	0.1	0.5	7
DETSC 2306 Zinc as Zn]	3	0.03	Ш	4	50	200
DETSC 2055 Chloride as Cl	7	00	< 100	Ш	800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1	Ш	10	150	500
DETSC 2055 Sulphate as SO4	31	.00	< 100	Ш	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	33	000	330	Ш	4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	<1	Ш	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50	IJĮ	500	800	1000
Additional Information					TBE -	To Be Evalua	ated
DETSC 2008 pH	8	.8			SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	46	5.6				Hazardous V	Vaste
* Temperature*	18	3.0		•			
Mass of Sample Kg*	0.1	110					
Mass of dry Sample Kg*	0.0	099					
Stage 1	-						
	٦ .						

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

0.978

0.92

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP01 0.50

Sample Numbers 2254899 2254912 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	2.2
DETSC 2003# Loss On Ignition	%	1.3
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	3.6
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

W	AC Limit Va	lues
Inert	SNRHW	Hazardous
Waste	SINKHW	Waste
3	5	6
n/a	n/a	10
6	n/a	n/a
1	n/a	n/a
500	n/a	n/a
100	n/a	n/a
n/a	>6	n/a
n/a	TBE	TBE
n/a	TBE	TBE

WAC Limit Values

Test Results On Leachate

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	< 0.16	< 0.01
DETSC 2306 Barium as Ba	12	0.12
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.63	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	2.3	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	< 0.090	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	0.76	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	610	< 100
DETSC 2055* Fluoride as F	140	1.4
DETSC 2055 Sulphate as SO4	74000	740
DETSC 2009* Total Dissolved Solids	240000	2400
DETSC 2130 Phenol Index	< 100	<1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

Limit val	ues for LS10) Leachate
Inert	SNRHW	Hazardous
Waste	SINIVION	Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000
10	150	500
1000	20,000	50,000

TBE - To Be Evaluated
SNRHW - Stable Non-Reactive
Hazardous Waste

60,000

n/a

800

100,000

n/a

1000

4000

1 500

Additional Information

DETSC 2008 pH	7.6
DETSC 2009 Conductivity uS/cm	348.0
* Temperature*	18.0
Mass of Sample Kg*	0.100
Mass of dry Sample Kg*	0.094

Stage 1

V.2.06

Volume of Leachant L2* 0.938
Volume of Eluate VE1* 0.88

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP01 1.00

Sample Numbers 2254900 2254913 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.8
DETSC 2003# Loss On Ignition	%	2.0
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.1
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	4.2
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINITION	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.32	< 0.01
DETSC 2306 Barium as Ba	6.3	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.45	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	1.2	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	< 0.090	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	0.66	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	810	< 100
DETSC 2055* Fluoride as F	140	1.4
DETSC 2055 Sulphate as SO4	23000	230
DETSC 2009* Total Dissolved Solids	78000	780
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

WAC Limit Values						
Limit values for LS10 Leachate						
Inert	SNRHW	Hazardous				
Waste	SIVILITY	Waste				
0.5	2	25				
20	100	300				
0.04	1	5				
0.5	10	70				
2	50	100				
0.01	0.2	2				
0.5	10	30				
0.4	10	40				
0.5	10	50				
0.06	0.7	5				
0.1	0.5	7				
4	50	200				
800	15,000	25,000				
10	150	500				
1000	20,000	50,000				
4000	60,000	100,000				
1	n/a	n/a				
500	800	1000				

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Additional Information

DETSC 2008 pH	8.2
DETSC 2009 Conductivity uS/cm	111.0
* Temperature*	18.0
Mass of Sample Kg*	0.110
Mass of dry Sample Kg*	0.098

Stage 1

V.2.06

Volume of Leachant L2* 0.97 Volume of Eluate VE1* 0.91

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP02 0.50 **Test Results On Waste**

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254901 2254914 Date Analysed 07/11/2023

Test Results On Waste			\	WAC Limit Values			
rest Results Oil Waste				Inert	SNRHW	Hazardous	
Determinand and Method Reference		Units	Result	Waste		Waste	
DETSC 2084# Total Organic Carbon		%	1.2	3	5	6	
DETSC 2003# Loss On Ignition		%	1.8	n/a	n/a	10	
DETSC 3321# BTEX		mg/kg	< 0.04	6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	500	n/a	n/a	
DETSC 3301 PAHs		mg/kg	< 1.6	100	n/a	n/a	
DETSC 2008# pH		pH Units	8.2	n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (p	H4)	mol/kg	3.2	n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (p	H7)	mol/kg	< 1.0	n/a	TBE	TBE	
Test Results On Leachate			•	\	VAC Limit Va	alues	
Test Results Off Leachate				Limit v	alues for LS1	0 Leachate	
Determinand and Method Reference	Conc in E	luate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous	
Determinant and Method Reference	_	0:1	LS10	Waste	3141114	Waste	
DETSC 2306 Arsenic as As).16	< 0.01	0.5	2	25	
DETSC 2306 Barium as Ba		.6	< 0.1	20	100	300	
DETSC 2306 Cadmium as Cd	< 0.	.030	< 0.02	0.04	1	5	
DETSC 2306 Chromium as Cr	< 0).25	< 0.1	0.5	10	70	
DETSC 2306 Copper as Cu	0.	66	< 0.02	2	50	100	
DETSC 2306 Mercury as Hg	< 0.	.010	< 0.002	0.01	0.2	2	
DETSC 2306 Molybdenum as Mo	1.4		< 0.1	0.5	10	30	
DETSC 2306 Nickel as Ni	< 0).50	< 0.1	0.4	10	40	
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05	0.5	10	50	
DETSC 2306 Antimony as Sb	< 0).17	< 0.05	0.06	0.7	5	
DETSC 2306 Selenium as Se	0.	29	< 0.03	0.1	0.5	7	
DETSC 2306 Zinc as Zn	<:	1.3	< 0.01	4	50	200	
DETSC 2055 Chloride as Cl	83	30	< 100	800	15,000	25,000	
DETSC 2055* Fluoride as F	1!	50	1.5	10	150	500	
DETSC 2055 Sulphate as SO4	78	300	< 100	1000	20,000	50,000	
DETSC 2009* Total Dissolved Solids	320	000	320	4000	60,000	100,000	
DETSC 2130 Phenol Index	< 1	100	< 1	1	n/a	n/a	
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50	500	800	1000	
Additional Information			_	TBE	- To Be Evalu	ated	
DETSC 2008 pH	8	.3		SNRHW	- Stable Non-	Reactive	
DETSC 2009 Conductivity uS/cm	46	5.2			Hazardous \	Waste	
* Temperature*	18	3.0					
Mass of Sample Kg*	0.1	110					
Mass of dry Sample Kg*	0.0	099					
Stage 1							
	1						

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

0.984

0.93

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP03 0.50

Test Results On Waste

* Temperature*

Stage 1

V.2.06

Mass of Sample Kg*

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2254902 2254915 Date Analysed 07/11/2023

WAC Limit Values

Test hesuits off waste					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result		Waste	SINKHW	Waste
DETSC 2084# Total Organic Carbon		%	1.6		3	5	6
DETSC 2003# Loss On Ignition	oss On Ignition		3.1		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.7		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	2.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE
Test Results On Leachate						AC Limit Va	
	T		II	4		ues for LS10	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/k	g	Inert	SNRHW	Hazardous
DETEC 2200 Amaria as As		0:1	LS10	4	Waste	2	Waste
DETSC 2306 Arsenic as As		.43	< 0.01		0.5	2	25
DETSC 2306 Barium as Ba		24	0.24		20	100	300
DETSC 2306 Cadmium as Cd		098	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr		.69	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu		2	< 0.02		2	50	100
DETSC 2306 Mercury as Hg		018	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo		5.2	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni		81	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb		.8	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb		25	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se		4	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn		5	0.015		4	50	200
DETSC 2055 Chloride as Cl		30	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F		100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4		0000	2300		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids		0000	3400		4000	60,000	100,000
DETSC 2130 Phenol Index		100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	.000	< 50		500	800	1000
Additional Information			•			To Be Evalua	
DETSC 2008 pH		.3			SNRHW -	Stable Non-I	Reactive
DETSC 2009 Conductivity uS/cm	48	1.0			Hazardous Waste		Vaste

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

18.0

0.100

0.093

0.918

0.86

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP04 0.50

Sample Numbers 2254903 2254916 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.1
DETSC 2003# Loss On Ignition	%	2.7
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	2.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINKHW	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

WAC Limit Values

1	Test	R	PSI	ılts	On	I e	acl	hate
ı	LCSL	17	CJU	IILS	VII	LC	au	Ialc

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.17	< 0.01
DETSC 2306 Barium as Ba	4.2	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.6	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	2.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	0.1	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	0.6	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 0.01
DETSC 2055 Chloride as Cl	780	< 100
DETSC 2055* Fluoride as F	< 100	< 0.1
DETSC 2055 Sulphate as SO4	8300	< 100
DETSC 2009* Total Dissolved Solids	68000	680
DETSC 2130 Phenol Index	< 100	<1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

Limit values for LS10 Leachate				
Inert	SNRHW	Hazardous		
Waste	SINITION	Waste		
0.5	2	25		
20	100	300		
0.04	1	5		
0.5	10	70		
2	50	100		
0.01	0.2	2		
0.5	10	30		
0.4	10	40		
0.5	10	50		
0.06	0.7	5		
0.1	0.5	7		
4	50	200		
800	15,000	25,000		
10	150	500		
1000	20,000	50,000		
4000	60,000	100,000		
1	n/a	n/a		

TBE - To Be Evaluated
SNRHW - Stable Non-Reactive
Hazardous Waste

800

1000

500

Additional Information

DETSC 2008 pH	7.8
DETSC 2009 Conductivity uS/cm	97.6
* Temperature*	18.0
Mass of Sample Kg*	0.110
Mass of dry Sample Kg*	0.096

Stage 1

V.2.06

Volume of Leachant L2* 0.941
Volume of Eluate VE1* 0.89

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP06 0.50

Test Results On Waste

Volume of Leachant L2*

Volume of Eluate VE1*

V.2.06

Sample Numbers 2254904 2254917 Date Analysed 07/11/2023

WAC Limit Values

Test Results Off Waste			Inert	SNRHW	Hazardous		
Determinand and Method Reference		Units	Result]	Waste	SINKHW	Waste
DETSC 2084# Total Organic Carbon		%	1.0	1	3	5	6
DETSC 2003# Loss On Ignition		%	3.9		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH		pH Units	7.9		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (p)H4)	mol/kg	< 1.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	oH7)	mol/kg	< 1.0		n/a	TBE	TBE
Test Results On Leachate				WAC Limit Values			
			II	4		ues for LS10	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg	3	Inert	SNRHW	Hazardous
		0:1	LS10	4	Waste		Waste
DETSC 2306 Arsenic as As		21	< 0.01		0.5	2	25
DETSC 2306 Barium as Ba		.7	< 0.1		20	100	300
DETSC 2306 Cadmium as Cd		.030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr).25	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu	_	63	< 0.02		2	50	100
DETSC 2306 Mercury as Hg		.010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1	1.1	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	_	.50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	< 0).17	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se		.3	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1	1.3	< 0.01		4	50	200
DETSC 2055 Chloride as Cl	10	000	< 100		800	15,000	25,000
DETSC 2055* Fluoride as F	< 1	100	< 0.1		10	150	500
DETSC 2055 Sulphate as SO4	42	200	< 100		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	400	000	400		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	100	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information	_		•		TBE -	To Be Evalua	ated
DETSC 2008 pH 7.6					SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm 56.						Hazardous V	Vaste
* Temperature* 18.0]				
Mass of Sample Kg*	0.1	120					
Mass of dry Sample Kg*	0.1	100					
Stage 1	_						
	1						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.984

0.93

Our Ref 23-25557 Client Ref 23-0881E

Contract Title NDFA SOCIAL HOUSING

Sample Id TP06 1.00

Sample Numbers 2254905 2254918 Date Analysed 07/11/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.1
DETSC 2003# Loss On Ignition	%	3.4
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	8.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values					
Inert	SNRHW	Hazardous			
Waste	SINULIAN	Waste			
3	5	6			
n/a	n/a	10			
6	n/a	n/a			
1	n/a	n/a			
500	n/a	n/a			
100	n/a	n/a			
n/a	>6	n/a			
n/a	TBE	TBE			
n/a	TBE	TBE			

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.27	< 0.01
DETSC 2306 Barium as Ba	3.4	< 0.1
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	< 0.25	< 0.1
DETSC 2306 Copper as Cu	0.78	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	0.58	< 0.1
DETSC 2306 Lead as Pb	0.13	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	< 0.25	< 0.03
DETSC 2306 Zinc as Zn	1.4	0.014
DETSC 2055 Chloride as Cl	1000	< 100
DETSC 2055* Fluoride as F	< 100	< 0.1
DETSC 2055 Sulphate as SO4	2900	< 100
DETSC 2009* Total Dissolved Solids	40000	400
DETSC 2130 Phenol Index	< 100	<1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

WAC Limit Values					
Limit values for LS10 Leachate					
Inert	SNRHW	Hazardous			
Waste	SIVILITY	Waste			
0.5	2	25			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			
1	n/a	n/a			
500	800	1000			

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional Information

DETSC 2008 pH	7.5
DETSC 2009 Conductivity uS/cm	57.7
* Temperature*	18.0
Mass of Sample Kg*	0.120
Mass of dry Sample Kg*	0.101

Stage 1

V.2.06

Volume of Leachant L2* 0.992
Volume of Eluate VE1* 0.94

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-25557 *Client Ref* 23-0881E

Contract Title NDFA SOCIAL HOUSING

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2254893	BH03A 0.50	SOIL	NAD	none	Lee Kerridge
2254894	BH04 0.50	SOIL	NAD	none	Lee Kerridge
2254895	TP05 0.50	SOIL	NAD	none	Lee Kerridge
2254896	TP05 1.00	SOIL	NAD	none	Lee Kerridge
2254897	BH01 0.50	SOIL	NAD	none	Lee Kerridge
2254898	BH03 0.50	SOIL	NAD	none	Lee Kerridge
2254899	TP01 0.50	SOIL	NAD	none	Lee Kerridge
2254900	TP01 1.00	SOIL	NAD	none	Lee Kerridge
2254901	TP02 0.50	SOIL	NAD	none	Lee Kerridge
2254902	TP03 0.50	SOIL	NAD	none	Lee Kerridge
2254903	TP04 0.50	SOIL	NAD	none	Lee Kerridge
2254904	TP06 0.50	SOIL	NAD	none	Lee Kerridge
2254905	TP06 1.00	SOIL	NAD	none	Lee Kerridge

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Our Ref 23-25557 Client Ref 23-0881E

Contract NDFA SOCIAL HOUSING

Containers Received & Deviating Samples

					Inappropriate
		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2254893	BH03A 0.50 SOIL	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254894	BH04 0.50 SOIL	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254895	TP05 0.50 SOIL	10/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254896	TP05 1.00 SOIL	10/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254897	BH01 0.50 SOIL	10/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254898	BH03 0.50 SOIL	10/10/23	GJ 250ml x4, GJ 60ml x4, PT 1L x4	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254899	TP01 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254900	TP01 1.00 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254901	TP02 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254902	TP03 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	

Our Ref 23-25557 Client Ref 23-0881E

Contract NDFA SOCIAL HOUSING

		inappropriate
Date		container for

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2254903	TP04 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254904	TP06 0.50 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254905	TP06 1.00 SOIL	11/10/23	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX / C5-C10 (14	
				days), Sulphur (free) (7 days), Naphthalene (14	
				days), PAH FID (14 days), pH + Conductivity (7 days),	
				Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
2254906	BH03A 0.50 LEACHATE	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
2254907	BH04 0.50 LEACHATE	10/10/23	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
2254908	TP05 0.50 LEACHATE	10/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254909	TP05 1.00 LEACHATE	10/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254910	BH01 0.50 LEACHATE	10/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254911	BH03 0.50 LEACHATE	10/10/23	GJ 250ml x4, GJ 60ml x4, PT 1L x4		
2254912	TP01 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254913	TP01 1.00 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254914	TP02 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254915	TP03 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254916	TP04 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254917	TP06 0.50 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		
2254918	TP06 1.00 LEACHATE	11/10/23	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C44	EH_CU_1D_AL
Aliphatic C10-C44	EH_CU_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C44	EH_CU_1D_AR
Aromatic C10-C44	EH_CU_1D_AR
Ali/Aro C10-C44	EH_CU_1D_Total
TPH (C10-C40)	EH_1D_Total
C24-C40 Lube Oil Range Organics (LC	EH_1D_Total

End of Report

Certificate of Analysis

Issued:

18-Dec-23

Certificate Number 23-28023

Client Causeway Geotech

Unit 1 Fingal House

Stephenstown Industrial Estate

Balbriggan Co. Dublin K32 VR66

Our Reference 23-28023

Client Reference 23-0881E

Order No (not supplied)

Contract Title NDFA - Oldtown Mill

Description 3 Soil samples, 3 Leachate prepared by DETS samples.

Date Received 29-Nov-23

Date Started 29-Nov-23

Date Completed 18-Dec-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Lab No	2269017	2269018	2269019
.Sample ID	BH08	BH11	BH06
Depth	0.50	1.00	0.50
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	19/10/2023	19/10/2023	17/10/2023
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units	-	-	,5
Preparation						
Moisture Content	DETSC 1004	0.1	%	25	29	20
Metals						
Antimony	DETSC 2301*	1	mg/kg	1.7	2.0	1.9
Arsenic	DETSC 2301#	0.2	mg/kg	14	13	13
Barium	DETSC 2301#	1.5	mg/kg	47	47	43
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	3.6	3.4	2.7
Chromium	DETSC 2301#	0.15	mg/kg	12	16	17
Chromium III	DETSC 2301*	0.15	mg/kg	12	16	17
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	26	30	28
Lead	DETSC 2301#	0.3	mg/kg	22	24	21
Mercury	DETSC 2325#	0.05	mg/kg	0.08	0.08	0.07
Molybdenum	DETSC 2301#	0.4	mg/kg	5.1	4.7	3.9
Nickel	DETSC 2301#	1	mg/kg	40	42	46
Selenium	DETSC 2301#	0.5	mg/kg	1.3	1.5	1.1
Zinc	DETSC 2301#	1	mg/kg	100	110	110
Inorganics pH	DETSC 2008#		рН	7.9	7.5	7.8
Cyanide, Total	DETSC 2008#	0.1	mg/kg	0.2	0.2	0.1
Total Organic Carbon		0.1	111g/ kg %	1.6	2.1	0.6
Sulphide	DETSC 2084#					
-	DETSC 2024*	10 0.75	mg/kg	< 0.75	28 < 0.75	< 0.75
Sulphur (free)	DETSC 3049#		mg/kg %			
Sulphate as SO4, Total Petroleum Hydrocarbons	DETSC 2321#	0.01	%	0.07	0.07	0.05
-	DETCC 2224*	0.01		4 0 01	. 0.01	4 O O1
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60	< 0.60

Summary of Chemical Analysis Soil Samples

Contract Title NDFA - Oldtown Willi			Lab No	2269017	2269018	2269019
		.Sa	ample ID	BH08	BH11	BH06
			Depth	0.50	1.00	0.50
			Other ID	1	2	1
		Sam	ple Type	ES	ES	ES
		-	_	19/10/2023	19/10/2023	17/10/2023
		-	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40		< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg		< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
Benzene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DFTSC 3311#	10	mg/kg	< 10	< 10	< 10
PAHs	DE13C 3311#	10	1116/116	110	(10	110
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1
Coronene	DETSC 3301*	0.1	mg/kg		< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg		< 1.6	< 1.6
PCBs		l. L			l.	
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01	< 0.01	< 0.01

Summary of Chemical Analysis Soil Samples

Lab No	2269017	2269018	2269019
.Sample ID	BH08	BH11	BH06
Depth	0.50	1.00	0.50
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	19/10/2023	19/10/2023	17/10/2023
Sampling Time	n/s	n/s	n/s

1631	Method	LOD	Ullits			
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.9	3.7	0.5

Summary of Chemical Analysis Leachate Samples

Lab No	2269020	2269021	2269022
.Sample ID	BH08	BH11	BH06
Depth	0.50	1.00	0.50
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	19/10/2023	19/10/2023	17/10/2023
Sampling Time	n/s	n/s	n/s
LOD Units			

Test	Method	LOD	Units			
Preparation						
BS EN 12457 10:1	DETSC 1009*			Υ	Υ	Υ
Inorganics						
Un-Ionised Ammonia	*	0.02	mg/l	< 0.02	< 0.02	< 0.02
Ammoniacal Nitrogen as NH4	DETSC 2207	0.0193	mg/l	0.08	0.03	0.02

WASTE ACCEPTANCE CRITERIA TESTING **ANALYTICAL REPORT**

Our Ref 23-28023 Client Ref 23-0881E

Contract Title NDFA - Oldtown Mill

Sample Id BH08 1 0.50

Sample Numbers 2269017 2269020 Date Analysed 15/12/2023

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.6
DETSC 2003# Loss On Ignition	%	5.2
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	7.9
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values			
Inert	SNRHW	Hazardous	
Waste	SINULIAN	Waste	
3	5	6	
n/a	n/a	10	
6	n/a	n/a	
1	n/a	n/a	
500	n/a	n/a	
100	n/a	n/a	
n/a	>6	n/a	
n/a	TBE	TBE	
n/a	TBE	TBE	

Test Resu	Its Or	า Leacl	hate
-----------	--------	---------	------

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Wethod Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.87	< 0.01
DETSC 2306 Barium as Ba	20	0.2
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02
DETSC 2306 Chromium as Cr	0.3	< 0.1
DETSC 2306 Copper as Cu	0.67	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	0.23	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	1.5	< 0.03
DETSC 2306 Zinc as Zn	2.7	0.027
DETSC 2055 Chloride as Cl	720	< 100
DETSC 2055* Fluoride as F	110	1.1
DETSC 2055 Sulphate as SO4	1600	< 100
DETSC 2009* Total Dissolved Solids	24000	240
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50

WAC Limit Values					
Limit values for LS10 Leachate					
Inert	SNIPHW Hazardo				
Waste	SNRHW Waste				

Inert	SNRHW	Hazardous		
Waste	SINKHW	Waste		
0.5	2	25		
20	100	300		
0.04	1	5		
0.5	10	70		
2	50	100		
0.01	0.2	2		
0.5	10	30		
0.4	10	40		
0.5	10	50		
0.06	0.7	5		
0.1	0.5	7		
4	50	200		
800	15,000	25,000		
10	150	500		
1000	20,000	50,000		
4000	60,000	100,000		
1	n/a	n/a		
500	800	1000		
TRF -	TRE - To Be Evaluated			

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

-					•			
$\boldsymbol{\Lambda}$	10	 nr	ıoı	In	tor	m	ation	
М,	ıu	 vı	ıaı		ıvı	1110	3 LIOI I	

DETSC 2008 pH	7.4
DETSC 2009 Conductivity uS/cm	34.7
* Temperature*	16.0
Mass of Sample Kg*	0.130

Mass of dry Sample Kg* Stage 1

V.2.06

Volume of Leachant L2* 0.947 Volume of Eluate VE1* 0.895

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.098

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-28023 *Client Ref* 23-0881E

Contract Title NDFA - Oldtown Mill

Sample Id BH11 2 1.00

Sample Numbers 2269018 2269021 Date Analysed 15/12/2023

Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	2.1
DETSC 2003# Loss On Ignition	%	6.8
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	7.5
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0

WAC Limit Values			
Inert	SNRHW	Hazardous	
Waste	SINULIAN	Waste	
3	5	6	
n/a	n/a	10	
6	n/a	n/a	
1	n/a	n/a	
500	n/a	n/a	
100	n/a	n/a	
n/a	>6	n/a	
n/a	TBE	TBE	
n/a	TBE	TBE	

WAC Limit Values

Test Resu	lts On	Leac	hate
-----------	--------	------	------

Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg
Determinand and Method Reference	10:1	LS10
DETSC 2306 Arsenic as As	0.95	< 0.01
DETSC 2306 Barium as Ba	5.3	< 0.1
DETSC 2306 Cadmium as Cd	0.034	< 0.02
DETSC 2306 Chromium as Cr	0.28	< 0.1
DETSC 2306 Copper as Cu	0.62	< 0.02
DETSC 2306 Mercury as Hg	< 0.010	< 0.002
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1
DETSC 2306 Nickel as Ni	< 0.50	< 0.1
DETSC 2306 Lead as Pb	0.18	< 0.05
DETSC 2306 Antimony as Sb	< 0.17	< 0.05
DETSC 2306 Selenium as Se	1.6	< 0.03
DETSC 2306 Zinc as Zn	1.4	0.014
DETSC 2055 Chloride as Cl	370	< 100
DETSC 2055* Fluoride as F	< 100	< 0.1
DETSC 2055 Sulphate as SO4	890	< 100
DETSC 2009* Total Dissolved Solids	13000	130
DETSC 2130 Phenol Index	< 100	< 1
DETSC 2085 Dissolved Organic Carbon	2400	< 50

Limit values for LS10 Leachate					
Inert	SNRHW	Hazardous			
Waste	SIVICITO	Waste			
0.5	2	25			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			

TBE - To Be Evaluated
SNRHW - Stable Non-Reactive
Hazardous Waste

n/a

800

1 500 n/a

1000

			ation

Mass of dry Sample Kg*

DETSC 2008 pH	7.2
DETSC 2009 Conductivity uS/cm	17.9
* Temperature*	16.0
Mass of Sample Kg*	0.140

Stage 1

V.2.06

Volume of Leachant L2* 0.955
Volume of Eluate VE1* 0.903

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.100

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING **ANALYTICAL REPORT**

Our Ref 23-28023 Client Ref 23-0881E

Contract Title NDFA - Oldtown Mill

Sample Id BH06 1 0.50

Test Results On Waste

* Temperature*

Stage 1

V.2.06

Mass of Sample Kg*

Mass of dry Sample Kg*

Volume of Leachant L2*

Volume of Eluate VE1*

Sample Numbers 2269019 2269022 Date Analysed 15/12/2023

Inert

WAC Limit Values

Hazardous

				inert	SNRHW	Hazardous	
Determinand and Method Reference	Units	Result	11	Waste	SINKHW	Waste	
DETSC 2084# Total Organic Carbon		%	0.6	1 [3	5	6
DETSC 2003# Loss On Ignition	ETSC 2003# Loss On Ignition		3.4	Ш	n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04	Ш	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	Ш	1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10	Ш	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6	Ш	100	n/a	n/a
DETSC 2008# pH		pH Units	7.8	Ш	n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (p	H4)	mol/kg	< 1.0	Ш	n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (p	H7)	mol/kg	< 1.0	IJ L	n/a	TBE	TBE
Test Results On Leachate				7 [AC Limit Va	
rest nesares on Ecachiate			U	- ∤ ⊦		ues for LS10	
Determinand and Method Reference Con			Amount Leached* mg/kg	<u> </u>	Inert	SNRHW	Hazardous
	10:1		LS10	J L	Waste		Waste
DETSC 2306 Arsenic as As		1	0.01	Ш	0.5	2	25
DETSC 2306 Barium as Ba		.8	< 0.1	Ш	20	100	300
DETSC 2306 Cadmium as Cd		.030	< 0.02	Ш	0.04	1	5
DETSC 2306 Chromium as Cr	0.3		< 0.1	Ш	0.5	10	70
DETSC 2306 Copper as Cu	0.46		< 0.02	Ш	2	50	100
DETSC 2306 Mercury as Hg		.010	< 0.002	Ш	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1		< 0.1	Ш	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50		< 0.1	Ш	0.4	10	40
DETSC 2306 Lead as Pb	< 0.	.090	< 0.05	Ш	0.5	10	50
DETSC 2306 Antimony as Sb	< C).17	< 0.05	Ш	0.06	0.7	5
DETSC 2306 Selenium as Se	1	9	< 0.03	Ш	0.1	0.5	7
DETSC 2306 Zinc as Zn	< :	1.3	< 0.01	Ш	4	50	200
DETSC 2055 Chloride as Cl	4.	50	< 100	Ш	800	15,000	25,000
DETSC 2055* Fluoride as F	< 100		< 0.1	Ш	10	150	500
DETSC 2055 Sulphate as SO4	2000		< 100	Ш	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	27000		270	Ш	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100		< 1	Ш	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon < 2000		000	< 50		500	800	1000
Additional Information				_	TBE -	To Be Evalua	ated
DETSC 2008 pH	6.4				SNRHW - Stable Non-Reactive		Reactive
DETSC 2009 Conductivity uS/cm	38.8				Hazardous Waste		Vaste
• •			I	L			

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

17.0

0.120

0.096

0.933

0.88

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-28023 *Client Ref* 23-0881E

Contract Title NDFA - Oldtown Mill

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2269017	BH08 1 0.50	SOIL	NAD	none	Barry Kelly
2269018	BH11 2 1.00	SOIL	NAD	none	Barry Kelly
2269019	BH06 1 0.50	SOIL	NAD	none	Barry Kelly

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Our Ref 23-28023 Client Ref 23-0881E

Contract NDFA - Oldtown Mill

Containers Received & Deviating Samples

Date containers Received Holding time exceeded for tests

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2269017	BH08 0.50 SOIL	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2	BTEX / C5-C10 (14 days), Sulphur (free) (7 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14	
2269018	BH11 1.00 SOIL	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2	BTEX / C5-C10 (14 days), Sulphur (free) (7 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14	
2269019	ВН06 0.50 SOIL	17/10/23	GJ 250ml, GJ 60ml, PT 1L x2	BTEX / C5-C10 (14 days), Sulphur (free) (7 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14	
2269020	BH08 0.50 LEACHATE	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2		
2269021	BH11 1.00 LEACHATE	19/10/23	GJ 250ml, GJ 60ml, PT 1L x2		
2269022	BH06 0.50 LEACHATE	17/10/23	GJ 250ml, GJ 60ml, PT 1L x2		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total
TPH (C10-C40)	EH_1D_Total
C24-C40 Lube Oil Range Organics (LO	EH_1D_Total

End of Report

APPENDIX K SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing

Unit 11

Charlwoods Road East Grinstead West Sussex RH19 2HU SPT Hammer Ref: 0895.

Test Date:

18/02/2023

Report Date:

20/02/2023

File Name:

0895..spt

Test Operator:

RWS

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.7

Assumed Modulus Ea (GPa): 208

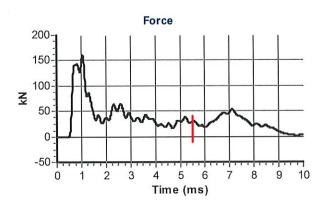
Accelerometer No.1:

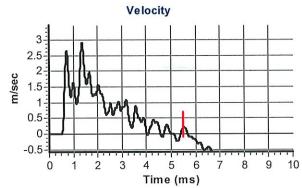
64786

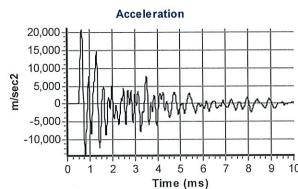
Accelerometer No.2:

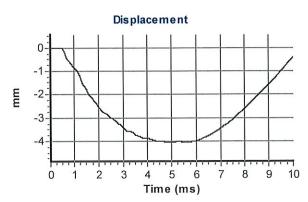
64789

SPT Hammer Information


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


Comments / Location

CAUSEWAY

Calculations

Area of Rod A (mm2):

996

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas}

(J): 309

Energy Ratio E_r (%):

65

Signed: Bob Stewart

Technician

Title:

The recommended calibration interval is 12 months